Udacity - Self-Driving Car Engineer nd013 v1.0.0

mp4   Hot:401   Size:7.17 GB   Created:2019-04-15 09:54:15   Update:2021-12-13 06:16:53  

File List

  • Part 01-Module 01-Lesson 01_Welcome/12. The Great Robot Race-saVZ_X9GfIM.mp4 316.54 MB
    Part 03-Module 02-Lesson 05_Path Planning Project/06. Path Planning Project Walkthrough and QA-7sI3VHFPP0w.mp4 280.92 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/07. Coding-zhQYREUI8Z0.mp4 105.02 MB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/02. Functional Safety Walkthrough-SsXNj_pfnao.mp4 89.96 MB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/02. ADL Project Walkthrough V2-5g9sZIwGubk.mp4 88.15 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/06. A - Artificial Intelligence for Robotics-lxCCtgHk5Vs.mp4 76.44 MB
    Part 03-Module 02-Lesson 01_Search/14. A-lxCCtgHk5Vs.mp4 76.44 MB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program - Artificial Intelligence for Robotics-TPIFP4E7DVo.mp4 61.35 MB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-xP9PrSTJPz0.mp4 49.02 MB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program Solution - Artificial Intelligence for Robotics-cl8Kdkr4Gbg.mp4 46.35 MB
    Part 03-Module 05-Lesson 05_System Integration Project/06. SDC Capstone Portfolio Part 1 V1 V2-6GIFyUzhaQo.mp4 44.86 MB
    Part 01-Module 02-Lesson 01_Career Services Available to You/04. Working at Uber ATG-V23NZzX0efY.mp4 40.53 MB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.mp4 40.4 MB
    Part 01-Module 02-Lesson 01_Career Services Available to You/03. Working at NVIDIA-C6Rt9lxMqHs.mp4 39.55 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-LEuzK9X7_hM.mp4 35.56 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/23. More Kalman Filters-hUnTg5v4tDU.mp4 35.46 MB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-SSyvcCZKlqo.mp4 34.87 MB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-bQA2ELDNmmg.mp4 34.34 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-X7cixvcogl8.mp4 33.73 MB
    Part 02-Module 03-Lesson 01_Introduction to Localization/01. L10 Localization Overview A01 Intro To AI-8p4C7jvfwvQ.mp4 32.73 MB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.mp4 32.54 MB
    Part 03-Module 02-Lesson 01_Search/16. A in Action-qXZt-B7iUyw.mp4 32.21 MB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.mp4 32 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/05. Brainstorming-LJFYhMDCCsU.mp4 31.66 MB
    Part 03-Module 02-Lesson 05_Path Planning Project/img/circle-path.gif 31.35 MB
    Part 03-Module 05-Lesson 05_System Integration Project/12. SDC Capstone Portfolio Part 4 V1-2tDrj8KjIL4.mp4 31.31 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/08. Debugging-Bz1tlvkql9Q.mp4 31.04 MB
    Part 03-Module 02-Lesson 05_Path Planning Project/img/car-in-line.gif 29.98 MB
    Part 01-Module 02-Lesson 01_Career Services Available to You/02. Working at Mercedes-Benz-Z_hi4djW5aw.mp4 29.96 MB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-rH5DKpwYQLY.mp4 29.76 MB
    Part 01-Module 01-Lesson 01_Welcome/04. What Projects Will You Build-JGpXenoW0dk.mp4 29.36 MB
    Part 02-Module 03-Lesson 05_Particle Filters/06. Particle Filters-4S-sx5_cmLU.mp4 29.09 MB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.mp4 29 MB
    Part 02-Module 04-Lesson 01_PID Control/13. Twiddle - Artificial Intelligence for Robotics-2uQ2BSzDvXs.mp4 28.71 MB
    Part 03-Module 05-Lesson 05_System Integration Project/10. SDC Capstone Portfolio Part 3 V1 V1-oTfArPhstQU.mp4 28.52 MB
    Part 03-Module 02-Lesson 01_Search/17. Dynamic Programming-r2bPY2s9wII.mp4 28.3 MB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-wNQVo6uOgYA.mp4 27.89 MB
    Part 03-Module 06-Lesson 01_Completing the Program/01. CarND Final Video-V2-hDsYM2Zd0jg.mp4 27.86 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/24. Kalman Filter Design-KYEr4BXhD_E.mp4 27.34 MB
    Part 03-Module 05-Lesson 05_System Integration Project/08. SDC Capstone Portfolio Part 2 V2-kdfXo6atphY.mp4 26.83 MB
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-bjZy-RVms_8.mp4 25.34 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/08. Hybrid A Introduction-NuurQejBk0o.mp4 25.19 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car-lL16AQItG1g.mp4 25.09 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/13. Interview with Art - Part 3-M6PKr3S1rPg.mp4 25.04 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.mp4 24.68 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-X7YggdDnLaw.mp4 24.56 MB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-aHLslaWO-AQ.mp4 23.62 MB
    Part 02-Module 04-Lesson 01_PID Control/07. PD Controller - Artificial Intelligence for Robotics-kVYy2kjZjhA.mp4 23.27 MB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-FdT1g_Bzjm0.mp4 23.26 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/20. Kalman Filter Land-LXJ5jrvDuEk.mp4 22.64 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/04. Interview with Art - Part 1-ClLYamtaO-Q.mp4 21.79 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.mp4 20.72 MB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.mp4 20.63 MB
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-zlCJQmxvrkE.mp4 20.61 MB
    Part 02-Module 03-Lesson 05_Particle Filters/01. Field Trip-2ocy_7PJtfA.mp4 20.55 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.mp4 20.28 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.mp4 19.91 MB
    Part 02-Module 04-Lesson 01_PID Control/14. Parameter Optimization - Artificial Intelligence for Robotics-A2b3F5Ae53Y.mp4 19.54 MB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.mp4 19.11 MB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/img/mpc-vid2.gif 18.87 MB
    Part 02-Module 03-Lesson 05_Particle Filters/07. Using Robot Class-1hgVZtRIjFU.mp4 18.8 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-ade97UKqSIc.mp4 18.76 MB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.mp4 18.44 MB
    Part 02-Module 04-Lesson 01_PID Control/04. Implement P Controller - Artificial Intelligence for Robotics-OrJgrTc5d04.mp4 18.25 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.mp4 18.22 MB
    Part 03-Module 02-Lesson 01_Search/04. Motion Planning-KHAu5A_flcQ.mp4 18.17 MB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion-M7ZJ74RVHqo.mp4 18.06 MB
    Part 02-Module 04-Lesson 06_The End/01. CarND Term 2 Outro-dLOe-KiTEw8.mp4 17.87 MB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.mp4 17.79 MB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.mp4 17.79 MB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.mp4 17.54 MB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.mp4 17.37 MB
    Part 01-Module 04-Lesson 08_Object Detection/02. Intro to Arpan and Drew-zfWvntpxbK0.mp4 17.32 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-d8UrbKKlGxI.mp4 17.31 MB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.mp4 17.04 MB
    Part 02-Module 04-Lesson 01_PID Control/15. Parameter Optimization Solution - Artificial Intelligence for Robotics-YQ5Pa-OKQm0.mp4 17.04 MB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/03. Radar Strengths And Weaknesses-m7kpRg3bEI8.mp4 16.98 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-krV6r7HxmZU.mp4 16.93 MB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-UAdcKWLi9G8.mp4 16.76 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/02. Clarifying the Question-XvvKBmKC_84.mp4 16.72 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.mp4 16.67 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/20. GoogLeNet-sdT5f8n7IcI.mp4 16.58 MB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.mp4 16.57 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.mp4 16.53 MB
    Part 01-Module 01-Lesson 01_Welcome/01. Welcome-jHA__A61nqc.mp4 16.21 MB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/02. Introduction-4E6RtK_Ml1I.mp4 16.18 MB
    Part 01-Module 04-Lesson 08_Object Detection/40. Traditional vs. Deep Learning Approach-_IFdaC0lWhI.mp4 16.14 MB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.mp4 15.95 MB
    Part 03-Module 05-Lesson 05_System Integration Project/img/rosbag-play.gif 15.84 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/06. L1 Sebastian-lw3O5Me6FRw.mp4 15.79 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/22. SVM Gamma Parameter-m2a2K4lprQw.mp4 15.5 MB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.mp4 15.44 MB
    Part 01-Module 04-Lesson 10_The End/01. CarND Term 1 Outro-5Apiqg20W8M.mp4 15.42 MB
    Part 03-Module 01-Lesson 01_Welcome/01. CarND Term 3 Intro-v4pRPMIudM0.mp4 15.27 MB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.mp4 15.22 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/16. Transforming a Stop Sign-OXILkkXXY8A.mp4 15.21 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.mp4 15.2 MB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.mp4 15.07 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/02. Module Introduction-uyLRFMI4HkA.mp4 15 MB
    Part 02-Module 04-Lesson 01_PID Control/11. PID Implementation - Artificial Intelligence for Robotics-Ag8H3Iit9j4.mp4 14.91 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/19. Empirics-VT8RENbE9Ck.mp4 14.79 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.mp4 14.72 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-8c479K2UCZo.mp4 14.6 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.mp4 14.59 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.mp4 14.4 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.mp4 14.38 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.mp4 14.28 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-HTL5-0DDqE4.mp4 14.2 MB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.mp4 14.05 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/02. Behavioral Cloning Project-YXs-IwG9ISg.mp4 13.92 MB
    Part 01-Module 03-Lesson 08_Keras/03. Deep Learning Frameworks-i2mmnu-t8-c.mp4 13.79 MB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.mp4 13.74 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/12. L6 Sebastian-AD47B4rAKyY.mp4 13.74 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/05. Deep Learning History-AWWLT4QxKaM.mp4 13.33 MB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.mp4 13.29 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-3xBycKfnCOQ.mp4 13.28 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4 13.24 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4 13.24 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.mp4 13.24 MB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid - Artificial Intelligence for Robotics-1l7bWfz8sJw.mp4 13.18 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.mp4 13.17 MB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.mp4 12.91 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.mp4 12.85 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.mp4 12.85 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.mp4 12.85 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.mp4 12.64 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.mp4 12.64 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.mp4 12.64 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/02. Bryan Catanzaro-CLIF_6QwlFo.mp4 12.55 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/21. Explanation of Project Code-3VRp4chnPE4.mp4 12.52 MB
    Part 01-Module 01-Lesson 01_Welcome/03. Overview-RZ5iolr4RGs.mp4 12.37 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/06. Imagenet-pcNxBs7OAzA.mp4 12.36 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-doyrdLJ6rJ4.mp4 12.36 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.mp4 12.24 MB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.mp4 12.19 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.mp4 12.18 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.mp4 12.18 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.mp4 12.18 MB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.mp4 12.08 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data-x2dmBUEKQIA.mp4 12.06 MB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-3kOrzhYCXz8.mp4 12.03 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.mp4 11.97 MB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.mp4 11.85 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.mp4 11.85 MB
    Part 02-Module 01-Lesson 01_Welcome/01. Term 2 Intro-LD5VEaq1WdY.mp4 11.77 MB
    Part 01-Module 04-Lesson 08_Object Detection/39. Summary of Vehicle Detection and Tracking-3ceKmVDQfFQ.mp4 11.73 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/04. Build Robots with ROS-7eaz0qW7y_I.mp4 11.63 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4 11.53 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4 11.53 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.mp4 11.53 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/02. L21 Advanced Techniques For Lane Finding A02 L Welcome To Computer Vision-FRBWnuf1OIg.mp4 11.21 MB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-RXpuBRA-cpo.mp4 11.15 MB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.mp4 11.03 MB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.mp4 10.96 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/32. What to Expect from the Project-WAt_g6HgYvs.mp4 10.83 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/05. 02 - Data Collection-kTJiHXJe_t4.mp4 10.82 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/11. L4 Sebastian-0L2DG60xWy8.mp4 10.72 MB
    Part 02-Module 04-Lesson 01_PID Control/02. PID Control - Artificial Intelligence for Robotics--8w0prceask.mp4 10.63 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/03. Overview-yN7u0qmJDhA.mp4 10.6 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/01. Introduction-mMT_3k1LvNU.mp4 10.48 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/09. 05 - Validating The Model-1UGOJGg-0dU.mp4 10.47 MB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.mp4 10.45 MB
    Part 03-Module 05-Lesson 05_System Integration Project/03. Traffic Lights 2-PzIRniXv0z0.mp4 10.42 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/04. Getting Started, Camera Calibration-0zlyx5nL8Uo.mp4 10.4 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/10. LeNet for Traffic Signs-VfJvSF087SI.mp4 10.32 MB
    Part 02-Module 03-Lesson 05_Particle Filters/26. 2012-QgOUu2sUDzg.mp4 10.31 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.mp4 10.22 MB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-7kllZxX-Nso.mp4 10.18 MB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-YwAyqkznxa0.mp4 10.14 MB
    Part 01-Module 02-Lesson 01_Career Services Available to You/01. Meet the Careers Team-cuKecPpZ7PM.mp4 10.12 MB
    Part 01-Module 01-Lesson 01_Welcome/06. Meet the Careers Team-cuKecPpZ7PM.mp4 10.12 MB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.mp4 10.12 MB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.mp4 10.06 MB
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-SFcHsK2SWrI.mp4 10.05 MB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.mp4 9.98 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/34. Outro-G3soGuQeHGU.mp4 9.97 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/03. L9 03 L GPUs-8eP2EpfBli0.mp4 9.94 MB
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-Ex0su1DnIuw.mp4 9.89 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.mp4 9.8 MB
    Part 03-Module 02-Lesson 02_Prediction/01. 01 L Introduction And Overview-aHmVFZ6hMjc.mp4 9.77 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/02. Introduction To Deep Learning-7xRwuECaXBs.mp4 9.77 MB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.mp4 9.74 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/04. Transfer Learning-pkCUxzJNtfI.mp4 9.64 MB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-AROtzVxDDx4.mp4 9.6 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/01. Introduction-Vnj2VNQROtI.mp4 9.59 MB
    Part 03-Module 05-Lesson 05_System Integration Project/02. L5 01 L Project Introduction-UT34zkxfS_M.mp4 9.57 MB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.mp4 9.54 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/03. ND013 01 L Intro To Neural Networks-UIycORUrPww.mp4 9.51 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/01. L1 01 L Introduction To Module-cHadgZtuDZA.mp4 9.5 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4 9.49 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4 9.49 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.mp4 9.49 MB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.mp4 9.47 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-yo8jf0U4hlc.mp4 9.46 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.mp4 9.46 MB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-CyQ2gl-9W4o.mp4 9.33 MB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.mp4 9.32 MB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-6UJFZf40aBg.mp4 9.29 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/04. Test Cases-7CNatJ7PqZ4.mp4 9.24 MB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/02. Outro to Project-LatP7XUPgIE.mp4 9.19 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/04. Solving Problems - Big And Small-WHcRQMGSbqg.mp4 9.17 MB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/02. Onward!-oYHg46OYpsM.mp4 9.09 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. 13 - Generalizing Data Collection-SfHOdOHf4Zk.mp4 9.05 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/09. 08 L StatesForASelfDrivingCarSolution-QXU6ptbxfyo.mp4 9.02 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/13. Lane Curvature-2UQ22uRybuU.mp4 9 MB
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--gNoDMlRwyc.mp4 8.97 MB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.mp4 8.93 MB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.mp4 8.9 MB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.mp4 8.9 MB
    Part 02-Module 03-Lesson 05_Particle Filters/24. You and Sebastian-gTMe0E6SM_M.mp4 8.79 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-joTa_FeMZ2s.mp4 8.77 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/33. UKF Story Time-gFdT8W1fmf8.mp4 8.74 MB
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-G7nvigL0aDw.mp4 8.72 MB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.mp4 8.7 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/03. Stanley Terrain Classification-MMllI8f5O5E.mp4 8.69 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/07. Alexnet-X-QVsH27Mo4.mp4 8.67 MB
    Part 02-Module 04-Lesson 04_Model Predictive Control/01. Model Predictive Control Intro-6z8A-1kNdz8.mp4 8.61 MB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/01. 04 Sensor Fusion A01 The Benefits Of Sensors-zHe-uogin5U.mp4 8.52 MB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/08. Color Spaces and Thresholding-dMI_so4P1Jc.mp4 8.46 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/08. L3 Arm Mover The Code-0Li845bwxyM.mp4 8.45 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/05. Convolutional Networks-ISHGyvsT0QY.mp4 8.42 MB
    Part 01-Module 04-Lesson 08_Object Detection/01. Intro to Vehicle Tracking-BAe-zslg088.mp4 8.4 MB
    Part 02-Module 04-Lesson 01_PID Control/12. PID Implementation Solution - Artificial Intelligence for Robotics-dgZnqCfyCoA.mp4 8.39 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-fRYtUP0P4Lg.mp4 8.34 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/07. Pinhole Camera Model and Types of Distortion-FBHyHUN-A8c.mp4 8.34 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro-pECnr-5F3_Q.mp4 8.33 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.mp4 8.24 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.mp4 8.22 MB
    Part 01-Module 04-Lesson 08_Object Detection/36. False Positives-rihCsPhUSPk.mp4 8.21 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-rczAG7meAY4.mp4 8.19 MB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-Sn-ZUbZdOn8.mp4 8.18 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/03. Confirming Inputs-8lPTOG1yLsg.mp4 8.17 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/02. lane line intro-aIkAcXVxf2w.mp4 8.1 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/31. Parameters And Consistency-S4fX3X_9oik.mp4 8.05 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/14. Perspective Transform-JTesiOANhB0.mp4 8.01 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn-R7xQtQzkvTk.mp4 8.01 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. Canny Edge Detection-Av2GsgQWX8I.mp4 8 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-MXXTeWLXliY.mp4 7.99 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/09. Power of Trigonometry-yLMTfBq_I3k.mp4 7.98 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/01. Intro-HbPxeJ3onmI.mp4 7.96 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.mp4 7.94 MB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.mp4 7.92 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.mp4 7.88 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/01. Intro to Classifiers-u7XLk1Q9Efw.mp4 7.88 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-_AAkw_fynwc.mp4 7.86 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-CvTXyvw7QLc.mp4 7.84 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/06. L5 Sebastian-30Ei-TLjYsk.mp4 7.77 MB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-wLz-nF2CrHc.mp4 7.72 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/13. Programming Assignment-gTEQHV_1E2k.mp4 7.72 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature-sAdM20gFi2M.mp4 7.7 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.mp4 7.64 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.mp4 7.62 MB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.mp4 7.62 MB
    Part 02-Module 03-Lesson 03_Markov Localization/18. Explain Markov Assumption For Motion Model-YFLAFptKU5E.mp4 7.6 MB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/01. Gradient Threshold-2TlORF3RzH8.mp4 7.57 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/02. Tracking Intro-BkjQzEyJWrE.mp4 7.55 MB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/02. L1 01 L Lesson Introduction--5dEvxYljG8.mp4 7.54 MB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.mp4 7.5 MB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-Exl_kCyUc8U.mp4 7.49 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/03. Gaussian Intro-6IhtnM1e0IY.mp4 7.48 MB
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.mp4 7.42 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/21. ResNet-fDCgul26GGk.mp4 7.41 MB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.mp4 7.39 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.mp4 7.37 MB
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.mp4 7.33 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/18. 14 L CostFunctionDesignWeightTweaking-NK6SP-r4dGs.mp4 7.32 MB
    Part 01-Module 04-Lesson 08_Object Detection/04. Object Detection Overview-zNBWOHycI0I.mp4 7.32 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/10. Computer Vision-wxQhfSdxjKU.mp4 7.3 MB
    Part 06-Module 01-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.mp4 7.29 MB
    Part 02-Module 04-Lesson 01_PID Control/09. Systematic Bias - Artificial Intelligence for Robotics-1wxFEcqq3_c.mp4 7.28 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/20. Error Functions-jfKShxGAbok.mp4 7.21 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-edcfMK_bKXw.mp4 7.18 MB
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-dBA94pR6JYw.mp4 7.14 MB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/02. Data collected from Castro St. in Mountain View, California.-FMNJPX_sszU.mp4 7.08 MB
    Part 03-Module 02-Lesson 01_Search/02. 01 L Intro Group-f7lpxAQDxVI.mp4 7.04 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/11. Chessboards-lA-I22LtvD4.mp4 7.03 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/10. Turtlesim Overview-GcAqAdMQXvM.mp4 6.97 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-tSfmiuB9s2c.mp4 6.95 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.mp4 6.92 MB
    Part 01-Module 01-Lesson 01_Welcome/02. Meet Your Instructors-QiflJFVOt18.mp4 6.84 MB
    Part 03-Module 02-Lesson 01_Search/01. 06 Path Planning A01 Motion Planning-JlBs1RxKvHE.mp4 6.8 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.mp4 6.79 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/03. L3 01 V2-a_eHxfy5tnI.mp4 6.79 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/09. LeNet on AWS-1shr08mozc0.mp4 6.77 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/05. L3 Sebastian-sGbjIAiDEUs.mp4 6.76 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/06. Runtime Analysis-8bI9OgOB2qI.mp4 6.74 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/05. What Is MATLAB SelfDriving-6J3Ho1ZrHm0.mp4 6.71 MB
    Part 06-Module 01-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.mp4 6.63 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/11. 10 L Hybrid A- In Practice-Mkz_WjyRzag.mp4 6.6 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Backpropagation V2-1SmY3TZTyUk.mp4 6.52 MB
    Part 06-Module 01-Lesson 05_Trees/01. Trees-PXie7f22v2Q.mp4 6.48 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/02. Introduction And Overview-G57ZvTBAUL8.mp4 6.46 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.mp4 6.45 MB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-MMDcirk9QPM.mp4 6.44 MB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.mp4 6.42 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/04. LeNet Implementation-EA3f6zTbbo0.mp4 6.41 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-SwxRWZaC1FM.mp4 6.31 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8xFV-I4VqZ0.mp4 6.3 MB
    Part 06-Module 01-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.mp4 6.27 MB
    Part 06-Module 01-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.mp4 6.26 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/01. 03 Deep Learning A01 Neural Network Intuition-UKEIHK5IifI.mp4 6.22 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/18. VGG-akFO1sH7Q_0.mp4 6.21 MB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.mp4 6.21 MB
    Part 03-Module 02-Lesson 02_Prediction/09. 09 L ProcessModels-VcRDsKBn7tc.mp4 6.2 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/05. L3 Simple Mover Code-jEO_4xxA_mI.mp4 6.17 MB
    Part 03-Module 02-Lesson 02_Prediction/05. 06 L Data Driven Example Trajectory Clustering-jbFeQ9P2V9A.mp4 6.16 MB
    Part 01-Module 04-Lesson 08_Object Detection/18. HOG Features-DNweoAqjwNQ.mp4 6.12 MB
    Part 02-Module 03-Lesson 01_Introduction to Localization/02. Localization Introduction-lwmXQ-kxU3s.mp4 6.1 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.mp4 6.1 MB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.mp4 6.09 MB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/02. Intro to Traffic Sign Classifier-7pULs5sC_7A.mp4 6.06 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.mp4 6.04 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/15. Radar Measurements-LOz9AaHvB8M.mp4 6.02 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.mp4 6.02 MB
    Part 06-Module 01-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.mp4 6 MB
    Part 06-Module 01-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.mp4 5.99 MB
    Part 06-Module 01-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.mp4 5.99 MB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.mp4 5.98 MB
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1--lq0uzHd9T0.mp4 5.97 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/14. Solving Trig Problems Part1-qI4i845d7Qg.mp4 5.97 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/31. 31 L PuttingItAllTogether-UhrmXmnKhQE.mp4 5.93 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/10. UKF Process Chain-sU7ifLgxxas.mp4 5.89 MB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/01. Project Steps-0lyUMJdg-PY.mp4 5.87 MB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/03. T2 P3 PF-0SbVwwY_NuQ.mp4 5.85 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/26. Conclusion-6kFMxhlfHuI.mp4 5.84 MB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.mp4 5.83 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/29. Outro-WOrM6qopj7A.mp4 5.8 MB
    Part 01-Module 04-Lesson 08_Object Detection/30. Sliding Windows-HMtd9EQooCk.mp4 5.78 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/03. What Is Deep Learning-INt1nULYPak.mp4 5.78 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-ICUYxC-8d7o.mp4 5.77 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/12. Look Away The Code -pOZW8SdyYsk.mp4 5.75 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/09. Distortion-q3B71N6FrGw.mp4 5.74 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.mp4 5.72 MB
    Part 02-Module 03-Lesson 05_Particle Filters/08. Robot Class Details-ZFqEh8JylvI.mp4 5.72 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/17. Conclusion-gMbDqd4ItiU.mp4 5.72 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/01. Kalman Filter Introduction-2zmbIjHpkRM.mp4 5.7 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-CxAxRCv9WoA.mp4 5.69 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/23. 22 Jerk Minimizing Trajectories-pomDFkzy2bk.mp4 5.65 MB
    Part 02-Module 04-Lesson 01_PID Control/01. Intro-CelGYr2DgpI.mp4 5.64 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn-olGPVtH7KGU.mp4 5.63 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.mp4 5.61 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.mp4 5.61 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/02. L1 02 L Introduction To Lesson-jinuK2-qPh4.mp4 5.6 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-zc_GQiISQ3E.mp4 5.58 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/13. 19 UKF Generate Sigma Points-t7YJJpEzTX4.mp4 5.55 MB
    Part 01-Module 03-Lesson 08_Keras/02. Introduction--DZ5OI2uCzU.mp4 5.52 MB
    Part 03-Module 05-Lesson 05_System Integration Project/01. 08 System Integration A02 Have Fun!-Wx3tVLt74b8.mp4 5.52 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/26. 21 L Measuring Performance-byP0DJImOSk.mp4 5.5 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses-U9-ZsbaaGAs.mp4 5.49 MB
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.mp4 5.43 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.mp4 5.43 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-osn2fVnCVgQ.mp4 5.41 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/12. Update Step-1Uq2QZKz3aI.mp4 5.39 MB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.mp4 5.37 MB
    img/carnd.jpg 5.35 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35 MB
    Part 02-Module 03-Lesson 03_Markov Localization/33. Bayes Filter Theory Summary-lMyu2-PZGuk.mp4 5.33 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33 MB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/01. 08 System Integration A01 Putting Everything Together-gxGk4undFEM.mp4 5.31 MB
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-FjRX_i3SsJA.mp4 5.31 MB
    Part 01-Module 03-Lesson 08_Keras/11. Conclusion-iLeQi96NRy0.mp4 5.31 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.mp4 5.31 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/12. Sebastian Discusses Risk-nuDIfITdhSc.mp4 5.29 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/01. L3 01 Introduction- Item Definition And HARA-6rojuFZJ4Os.mp4 5.27 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-PsyqM704q2Y.mp4 5.26 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. canny and gradient-LQM--KPJjD0.mp4 5.25 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/13. 08 - Side Cameras-GumTdw9mjL0.mp4 5.25 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/17. Alexnet Today-AItZPkRHH_I.mp4 5.22 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/08. 04 - Training The Network-iYH4UvsPgOY.mp4 5.22 MB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.mp4 5.19 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian--9AVZ-N_gbM.mp4 5.19 MB
    Part 01-Module 04-Lesson 08_Object Detection/24. Labeled Data-H_i1ctez_Qw.mp4 5.15 MB
    Part 01-Module 04-Lesson 08_Object Detection/14. Color Spaces-Adunl74VJIY.mp4 5.13 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/12. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/16. 22 L UKF Augmentation-G-kdutCM1RQ.mp4 5.12 MB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-V0Ppaw5G2Pg.mp4 5.1 MB
    Part 02-Module 03-Lesson 03_Markov Localization/31. Markov Assumption For Observation Model-dyDjINdrIz0.mp4 5.09 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/10. 06 - Data Preprocessing-Oc7cLOS03PE.mp4 5.06 MB
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain-KYieR9y-ue4.mp4 5.05 MB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/07. Color Spaces-mhILAhzgPRE.mp4 5.03 MB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.mp4 5.02 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-WVg5-vxQDm8.mp4 5.01 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/15. L6 22 L Lesson Outro-zSyoNGrZZ0k.mp4 5 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/19. Explore the Design Space-FG7M9tWH2nQ.mp4 5 MB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-dH6uzx78lBA.mp4 4.97 MB
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-hcoKwWBvB6Y.mp4 4.95 MB
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-d_DXbkU7iPY.mp4 4.95 MB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid Solution - Artificial Intelligence for Robotics-pH6sDfBalaw.mp4 4.94 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/27. Transition Overfitting - Dataset Size-Lmxem7ud9yk.mp4 4.89 MB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/04. Lidar Strengths And Weaknesses-xpUduMU9-jo.mp4 4.89 MB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/05. Roslaunch-EsGNppn8UlQ.mp4 4.87 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.mp4 4.87 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/16. Outro-dps7Ti6Lado.mp4 4.86 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/11. Lesson Summary-c_PnlhHye3w.mp4 4.85 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/05. Distortion-Bv3o0INBQIU.mp4 4.84 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. Error Function-V5kkHldUlVU.mp4 4.84 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/img/car-bound-box-clip.gif 4.8 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/08. L1 17 Reducing Risk With System Engineering-tFxkJKcujhQ.mp4 4.78 MB
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-7CNEY8lRrGE.mp4 4.77 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/15. ND013 M4 L6 Converting Landmark Observations-BrQfVd4JXpg.mp4 4.76 MB
    Part 03-Module 02-Lesson 02_Prediction/18. Mahni Prediction Outro-hRozwCcoocY.mp4 4.75 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/05. Types of Motion Planning Algorithms-6-K1aLTEvk8.mp4 4.74 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/03. L5 07 Other Types Of Techincal Safety Requirements-9xIlkXobXS0.mp4 4.74 MB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.mp4 4.74 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Combinando modelos-Boy3zHVrWB4.mp4 4.73 MB
    Part 02-Module 03-Lesson 04_Motion Models/09. Odometry Errors Solution-FS_5mHoszx8.mp4 4.71 MB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.mp4 4.71 MB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/06. Rosdep-Kei6k78fydE.mp4 4.7 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/04. Maximizing the Margin-otAraUuSrJo.mp4 4.7 MB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.mp4 4.69 MB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/01. 04 Sensor Fusion A02 High Performance Computing-rMGNMvjG5KA.mp4 4.66 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/03. Welcome to ROS Essentials-rvebtwi46SI.mp4 4.65 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/11. Nearest Neighbor Advantages And Disadvantages-snXId_LyzXs.mp4 4.65 MB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-xU84TShi7I4.mp4 4.64 MB
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.mp4 4.63 MB
    Part 06-Module 01-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.mp4 4.61 MB
    Part 01-Module 04-Lesson 08_Object Detection/38. Tracking Pipeline-ioaSZFCn3iI.mp4 4.6 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/14. 10 - Image Cropping-SpPxyW-869U.mp4 4.58 MB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/04. L1 04 L Perception Subsystem-zo_JO5Sytuc.mp4 4.57 MB
    Part 03-Module 02-Lesson 01_Search/09. Maze-ge_-o0RfrgM.mp4 4.57 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basic Unscented Transformation-r594P0XjKa4.mp4 4.56 MB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-VJvBzdTPlAQ.mp4 4.55 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/07. Kalman Filter Equations In C++ Programming-KV4ZdUnOz9I.mp4 4.55 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy--gJJmckPBAg.mp4 4.55 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/01. Vehicle Models Intro-qkT7Sr8HHBw.mp4 4.55 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/01. L6 01 L Intro-urgjYwIY3hs.mp4 4.54 MB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.mp4 4.51 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/01. Trig Preface-DCX6mK9cre0.mp4 4.5 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/19. 18 L S D And T-SD1iyzgFf8s.mp4 4.5 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-SK3cnmu8BYU.mp4 4.49 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/04. Initialization-agPdu0c5_GM.mp4 4.48 MB
    Part 06-Module 01-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.mp4 4.48 MB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/05. Live Data Walkthrough-zXu6y0aNfjk.mp4 4.48 MB
    Part 02-Module 03-Lesson 03_Markov Localization/04. 03 L Explain Localization Posterior V2-lGpIgbA5ZdA.mp4 4.47 MB
    Part 02-Module 03-Lesson 05_Particle Filters/11. Robot World-qq5h-Xw4DGg.mp4 4.46 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/02. ROS L3 Overview-LPbq_YwrzME.mp4 4.46 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-pH51jLfGXe0.mp4 4.45 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/25. Measurement Prediction-qDX8nL_OT60.mp4 4.45 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/01. Intro-1sm1EbfilXI.mp4 4.45 MB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.mp4 4.44 MB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.mp4 4.42 MB
    Part 01-Module 03-Lesson 02_MiniFlow/01. Introduction to MiniFlow-FxmB3Q308h0.mp4 4.4 MB
    Part 02-Module 03-Lesson 03_Markov Localization/20. Explain Recursive Structure-d0GrWJeVFjU.mp4 4.4 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-2BfisMbu86o.mp4 4.4 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/14. Programming Assignment Solution-udsB-13ntY8.mp4 4.39 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/15. Recap-7G5xOFeSrh0.mp4 4.38 MB
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-rA8ZpMR6yXM.mp4 4.36 MB
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.mp4 4.36 MB
    Part 03-Module 02-Lesson 05_Path Planning Project/img/playfuldesertedblackrussianterrier-size-restricted.gif 4.35 MB
    Part 02-Module 03-Lesson 01_Introduction to Localization/05. Localizing a Self Driving Car-U-uDtVgezcE.mp4 4.32 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/25. Outro-k5VhLE0OoOM.mp4 4.32 MB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/06. L1 08 L Planning Subsystem-MxG9DtKiSqM.mp4 4.31 MB
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-ajOKsQLxoJI.mp4 4.31 MB
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.mp4 4.29 MB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.mp4 4.27 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/05. Refresh Estimation Problem-Uwq7_6slV_M.mp4 4.27 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/11. UKF What's the Problem-OFb47Lu9JfM.mp4 4.27 MB
    Part 06-Module 01-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.mp4 4.26 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-4qJwfAWG_wQ.mp4 4.23 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/26. Cross Entropy 1-iREoPUrpXvE.mp4 4.22 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/15. 11 - NVIDIA Architecture-6vVPHcgQkLg.mp4 4.22 MB
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.mp4 4.22 MB
    Part 06-Module 01-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.mp4 4.2 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.mp4 4.19 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/10. Process Covariance Matrix-iFcIiqRGaws.mp4 4.18 MB
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.mp4 4.15 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/28. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14 MB
    Part 06-Module 01-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.mp4 4.13 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/12. Let's make a deal-l1xMgirpwCU.mp4 4.11 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/01. 03 Deep Learning A04 Simulation-K8ROKGMm-mc.mp4 4.1 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/25. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.mp4 4.1 MB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.mp4 4.1 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-QAqsIWVVX0Y.mp4 4.09 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/01. Interview Introduction-dRsHYt1Lddc.mp4 4.09 MB
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-OXIESpN0KaE.mp4 4.08 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons-svA0HOjFFl0.mp4 4.08 MB
    Part 02-Module 03-Lesson 04_Motion Models/02. Lesson Introduction--bPE6USDH3A.mp4 4.08 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/22. 21 L TrajectoriesWithBoundaryConditions-p73Jma9nW-Q.mp4 4.04 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/21. Cross Entropy-tRsSi_sqXjI.mp4 4.04 MB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/03. Finding Lane Pixels by Histogram and Sliding Window-siAMDK8C_x8.mp4 4.03 MB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/06. Wrap Up-Pe70LsgCa28.mp4 4.02 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/02. 01 L Lesson Outline-qyH-1BMCiUY.mp4 4 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/07. L2 12 L Outro-NNp7X8thmX8.mp4 3.99 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/06. Quick Fixes-Lb9e2KemR6I.mp4 3.99 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/17. Vehicle Models Outro-DqKw_m3Uxr0.mp4 3.99 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/09. Compute Graph-dWc4ktFohNg.mp4 3.98 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-2ieszOqnpWs.mp4 3.96 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-TGdMG81hXc8.mp4 3.96 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/05. 04 L Finite State Machine-NERRPjU08NU.mp4 3.95 MB
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.mp4 3.93 MB
    Part 06-Module 01-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.mp4 3.93 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/32. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.mp4 3.92 MB
    Part 06-Module 01-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.mp4 3.91 MB
    Part 02-Module 04-Lesson 01_PID Control/05. Implement P Controller Solution - Artificial Intelligence for Robotics-wvdFPAOCb64.mp4 3.9 MB
    Part 01-Module 03-Lesson 08_Keras/01. 03 Deep Learning A02 Deep Learning Breakthroughs-iYdQ7bKBxFE.mp4 3.9 MB
    Part 03-Module 02-Lesson 02_Prediction/07. 08 L ThinkingAboutModelBasedApproaches-2JHmXN4AKNY.mp4 3.89 MB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/01. Introduction-qA6Za_Pt5d0.mp4 3.87 MB
    Part 01-Module 04-Lesson 08_Object Detection/11. Color Histogram Features-8ZvNANafMU8.mp4 3.86 MB
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.mp4 3.86 MB
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.mp4 3.86 MB
    Part 01-Module 04-Lesson 08_Object Detection/33. Multi-scale Windows-uiPNkPggWLE.mp4 3.86 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-EllzeBecnkU.mp4 3.85 MB
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-qFswCrEUZSM.mp4 3.85 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/10. Linear Boundaries-X-uMlsBi07k.mp4 3.85 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85 MB
    Part 03-Module 03-Lesson 04_Inference Performance/07. Fusion-JOksFH3vQgk.mp4 3.84 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-z-cX1kYbC1w.mp4 3.82 MB
    Part 01-Module 04-Lesson 08_Object Detection/23. Build a Classifier-YUCFFNC7tw4.mp4 3.82 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.mp4 3.81 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. sine Hough-XQf7FOhwOVk.mp4 3.81 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/17. Extended Kalman Filter-nMUd_esBMM8.mp4 3.81 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/05. Brief History of ROS-Cw-FEyqU2NI.mp4 3.8 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/03. Lesson Map-_u8Vk58VqxY.mp4 3.8 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/02. L2 01 L ROS And Carla--G-kEnQWKgY.mp4 3.8 MB
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.mp4 3.8 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/06. 05 HARA Situational Analysis-o9iBiz7IQ_k.mp4 3.79 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/34. 35 L Conclusion-R56iixkZvEE.mp4 3.79 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes-nQsYfzO7-00.mp4 3.79 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick-3Xw6FKYP7e4.mp4 3.78 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/01. L2 01 L Introduction- Safety Plan-nQD8NgwXuj4.mp4 3.78 MB
    Part 03-Module 02-Lesson 02_Prediction/14. 14 L IntroToNaiveBayes-AkrC_WP1MWk.mp4 3.76 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/30. Gradient Descent-rhVIF-nigrY.mp4 3.76 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/12. 09 - Data Augmentation-2oaB2_DhmF8.mp4 3.75 MB
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-7-yOaHVeATk.mp4 3.74 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Intro-JFwj5UtKmPY.mp4 3.73 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/11. L3 25 L HARA Outro-T0Xxu-Xh4J0.mp4 3.73 MB
    Part 06-Module 01-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.mp4 3.72 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/18. 17 L The Need For T-4WsqXkB8zqQ.mp4 3.72 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/03. Good GitHub repository-qBi8Q1EJdfQ.mp4 3.72 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/16. L4 01 L Outro-LwI4UmDGLeM.mp4 3.69 MB
    Part 06-Module 01-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.mp4 3.68 MB
    Part 06-Module 01-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.mp4 3.68 MB
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-NhKyyhNl70A.mp4 3.68 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/14. Assignment Sigma Point Generation-TIc3n-cxTqc.mp4 3.66 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/11. 07 - LeNet Again-rVusn6F5i7s.mp4 3.66 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/05. L5 12 Allocation Of Requirements To System Acrchitecture Elements-dA2up9vZCcM.mp4 3.66 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/19. Sigma Point Prediction-zeMy0dth3yI.mp4 3.65 MB
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--HQf6pkcebQ.mp4 3.65 MB
    Part 02-Module 03-Lesson 04_Motion Models/01. 05 Localization A03 Motion In Autonomy-yiinXr2rV2M.mp4 3.64 MB
    Part 03-Module 02-Lesson 02_Prediction/11. 11 L MultimodalEstimationApproaches-u1Tmt0Qdlgk.mp4 3.63 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/23. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.mp4 3.63 MB
    Part 06-Module 01-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.mp4 3.63 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/15. Run Turtlesim-hCkE973oY9o.mp4 3.6 MB
    Part 01-Module 03-Lesson 08_Keras/04. High Level Frameworks-ThmsQxazSvM.mp4 3.6 MB
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.mp4 3.58 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/19. Jacobian Matrix-FeE5cRlMZqU.mp4 3.57 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/07. 03 - Data Visualization-_Gto6fQQWFI.mp4 3.55 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/19. Error Functions-YfUUunxWIJw.mp4 3.54 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. 12 - More Data Collection-cCZNlX3KLnY.mp4 3.54 MB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.mp4 3.54 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/19. Turtlesim Comms Message Information-f89-UgEb8Y0.mp4 3.53 MB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/02. Overview of Catkin Workspaces and Packages-VqYNipeW72o.mp4 3.51 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/05. LeNet Training Pipeline-yof-J8Xktlk.mp4 3.51 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/04. L4 06 Allocation Of Requirements To Architecture-cDkQLZ3PJqM.mp4 3.5 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png 3.49 MB
    Part 06-Module 01-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.mp4 3.49 MB
    Part 02-Module 03-Lesson 03_Markov Localization/14. Apply Bayes Rule With Additional Conditions-RsHS2o3zjcw.mp4 3.49 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/12. Summary Functional Safety Concept-NVCU1mOxnAo.mp4 3.49 MB
    Part 06-Module 01-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.mp4 3.48 MB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.mp4 3.47 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-ZwMY5rAAd7Q.mp4 3.46 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/03. LeNet Data-eCP8o1BnhRA.mp4 3.46 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/02. Intro To Deep Neural Networks-SXtXg_BB4lI.mp4 3.46 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/01. 06 Path Planning A04 From Behavior To Trajectory-7yo_HJ1_J9Q.mp4 3.45 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/06. Nodes And Topics-t5xWx5Zgmk0.mp4 3.45 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/31. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.mp4 3.42 MB
    Part 03-Module 03-Lesson 04_Inference Performance/04. P3-yncq5HhDTV4.mp4 3.41 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/01. L5 01 L Introduction-wBKlo2Lk_A0.mp4 3.41 MB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.mp4 3.39 MB
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.mp4 3.39 MB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.mp4 3.38 MB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/01. 01 Introduction A02 Building A Portfolio-q8ZysjEREiM.mp4 3.38 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/05. IoU---9BTjOsO6U.mp4 3.36 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/02. GitHub profile important items-prvPVTjVkwQ.mp4 3.36 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/07. L4 13 ASIL Decomposition-dphScT1QTNY.mp4 3.32 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-mQtjczyAxQs.mp4 3.31 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-0FmTokjoRgo.mp4 3.31 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-HmcurWkA0fQ.mp4 3.3 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/14. Participating in open source projects 2-elZCLxVvJrY.mp4 3.3 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/02. 01 L Lesson Overview-BU4oChjLv7A.mp4 3.29 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/20. Turtlesim Comms Echo Messages-HNA7eKhYcyA.mp4 3.28 MB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.mp4 3.28 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-dGS0SKu1ox0.mp4 3.27 MB
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.mp4 3.26 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature--_jNi_5zEEQ.mp4 3.26 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/13. Outro-vyNI5hdMigs.mp4 3.25 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-sy_jiSEy-Nw.mp4 3.24 MB
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-5vdbYPc7tWw.mp4 3.22 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM-gnAmmyQ_ZcQ.mp4 3.21 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/08. 07 L StatesForASelfDrivingCar-zoN0-IPe0I4.mp4 3.21 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/32. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.2 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/21. Recap-7WOQ89HYhxA.mp4 3.2 MB
    Part 03-Module 02-Lesson 02_Prediction/06. 07 L TrajectoryClustering2 - Online Prediction-UPiED4soM4w.mp4 3.18 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/29. 1x1 Convolutions-Zmzgerm6SjA.mp4 3.16 MB
    Part 06-Module 01-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.mp4 3.15 MB
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.mp4 3.15 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/02. Lesson Introduction-_VjhAIChVcI.mp4 3.15 MB
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-FQEeI3qzaOM.mp4 3.14 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Nd113 C6 L3 09 L Trigonometric Ratios V2-wquwvrT9g_U.mp4 3.12 MB
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.mp4 3.11 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Layers-pg99FkXYK0M.mp4 3.11 MB
    Part 01-Module 04-Lesson 08_Object Detection/26. Train a Classifier-EBEN6KLQm8A.mp4 3.1 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/22. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.mp4 3.09 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png 3.09 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/04. 03 L The Behavior Problem-5t-oVAZagT8.mp4 3.08 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/23. Evaluating The Performance-1HieeV8IUv8.mp4 3.08 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-Lwn6FJgyyYI.mp4 3.07 MB
    Part 02-Module 03-Lesson 03_Markov Localization/03. ND013 M4 L3 02 L Localization Posterior-WCva9DtGgGA.mp4 3.05 MB
    Part 02-Module 04-Lesson 01_PID Control/06. Oscillations - Artificial Intelligence for Robotics-CO3zjkxBaIc.mp4 3.03 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/11. Reflect on your commit messages-_0AHmKkfjTo.mp4 3.03 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz - Cross 1--xxrisIvD0E.mp4 3.02 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/07. Introduction To Evaluating Risks-3N-6YK_pPzA.mp4 3.01 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/03. Fully Convolutional Networks-_Lh2ozg5yTs.mp4 3 MB
    Part 06-Module 01-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.mp4 2.99 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/07. L3 09 L HARA Identification Of Hazards-LXp7ScZaKp4.mp4 2.97 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/29. Assignment UKF Update-f36o4sCEQvY.mp4 2.94 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/01. 06 Path Planning A03 Where To--9ZrXlxPH4L4.mp4 2.93 MB
    Part 02-Module 03-Lesson 03_Markov Localization/15. Explain Bayes Rule And Apply Law Of Total Probability-p2qfHa9G7_k.mp4 2.93 MB
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-_37pf6lV15s.mp4 2.92 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/07. L5 14 L Outro-sIe4SZfDUmM.mp4 2.92 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png 2.9 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/17. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/08. L4 15 Fault Tolerant Time Interval-o4PzRfVN_to.mp4 2.86 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/38. Multilayer perceptrons-Rs9petvTBLk.mp4 2.85 MB
    Part 03-Module 02-Lesson 02_Prediction/03. 04 L Model Vs Data Driven Approaches-ehfA_NC7Ka4.mp4 2.85 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/03. color selection-bNOWJ9wdmhk.mp4 2.84 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.mp4 2.83 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/03. 02 L The Motion Planning Problem-daGIOru4Bi4.mp4 2.82 MB
    Part 06-Module 01-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.mp4 2.81 MB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/09. Interview Wrap-Up-sz4Ekcu9a_Q.mp4 2.8 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/08. L6 11-12 Software Safety Robustness And Quality-RQEnvtti3sM.mp4 2.8 MB
    Part 06-Module 01-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.mp4 2.78 MB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/01. 05 Localization A01 Sparse Localization-DBZ7QdXPldc.mp4 2.78 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/09. L1 19 Introduction To Iso26262-bjvpmBOG60Q.mp4 2.77 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/12. Participating in open source projects-OxL-gMTizUA.mp4 2.77 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/12. 12 L CreateACostFunctionSpeedPenalty-wGRDT2wTnn8.mp4 2.75 MB
    Part 02-Module 04-Lesson 04_Model Predictive Control/11. Model Predictive Control Outro-iEdMInAsjgM.mp4 2.73 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/13. Training Your Logistic Classifier-WQsdr1EJgz8.mp4 2.72 MB
    Part 02-Module 03-Lesson 03_Markov Localization/16. Explain Law Of Total Probability And Markov Assumption-9hGU7s5m8c0.mp4 2.71 MB
    Part 03-Module 03-Lesson 04_Inference Performance/01. Intro-dK5Yn3sq5RM.mp4 2.7 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/11. 10 Backprop-wSXcrBbY8oE.mp4 2.68 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68 MB
    Part 03-Module 02-Lesson 01_Search/09. Maze-yVh0lVlerWs.mp4 2.68 MB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/01. 08 System Integration A04 ROS At Stanford-YxbwPjGylI8.mp4 2.68 MB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.mp4 2.68 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/10. Data Association- Nearest Neighbor-nG_pFGT-fuo.mp4 2.67 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Nd113 C6 L3 04 L Moving At An Angle V2-2KDq_ZzN3Mk.mp4 2.66 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/04. L5 09 Technical Safety Requirement Attributes-EOYTl2e8wEs.mp4 2.66 MB
    Part 02-Module 03-Lesson 03_Markov Localization/02. Markov Location Lesson Overview-rSj5lpzliQg.mp4 2.66 MB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/01. 02 Computer Vision A02 Becoming An Expert--ZIJqfTk8mg.mp4 2.65 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/30. Inception Module-SlTm03bEOxA.mp4 2.62 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/03. L2 05 L Tailoring The Safety Lifecycle-Ym9raP5zb2U.mp4 2.59 MB
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.mp4 2.59 MB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/01. 03 Deep Learning A03 Starting With Neural Networks-TgRhLmHRvfE.mp4 2.59 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/01. 02 Computer Vision A01 The Challenges With Cameras-n2RSEjPn814.mp4 2.59 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/11. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/19. Dropout-6DcImJS8uV8.mp4 2.58 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/24. 23 L DerivationOverview-TuVp_HhQq7A.mp4 2.58 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/02. Why Fully Convolutional Networks (FCNs) -WQ_YOz1o9GM.mp4 2.57 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/13. Training a Deep Learning Network-CsB7yUtMJyk.mp4 2.56 MB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-JNI9O9FjfDQ.mp4 2.54 MB
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-WKlm2aO2QGY.mp4 2.54 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/30. 29 L Implementing Feasibility-8tD8Os9_gKc.mp4 2.54 MB
    Part 06-Module 01-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.mp4 2.52 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/04. Scene Understanding-aMQREc-mP50.mp4 2.52 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/09. L3 18 L HARA ASIL Levels-l7vx-w06fZw.mp4 2.5 MB
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-sCZI5gWS6mg.mp4 2.49 MB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.mp4 2.49 MB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/01. L6 25 L Project Outro-k3tl3pkGBa8.mp4 2.48 MB
    Part 01-Module 04-Lesson 08_Object Detection/21. Combining Features-5tQx6J-VzsI.mp4 2.47 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.mp4 2.47 MB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/08. ROS L2 Recap-OIZsHXuHWuI.mp4 2.46 MB
    Part 02-Module 03-Lesson 03_Markov Localization/32. Finalize The Bayes Localization Filter-teVw2J-_6ZE.mp4 2.45 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/20. Assignment Sigma Point Prediction-RQvnRpSPUak.mp4 2.45 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-TkaTTptnYdA.mp4 2.45 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-U3FUxkm1MxI.mp4 2.45 MB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/04. Adding a Package-UJlCdokCJJ0.mp4 2.44 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Nd113 C6 L3 045 L Moving At An Angle Part2 V2-iI6zCp0RegM.mp4 2.43 MB
    Part 02-Module 03-Lesson 03_Markov Localization/01. 05 Localization A02 A Return To Bayes Ruls-7FgzbyeJCp8.mp4 2.4 MB
    Part 03-Module 03-Lesson 04_Inference Performance/16. Outro-jMSB5_P_fss.mp4 2.38 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 HARA Risk Assessment, Severity, Exposure, Controllability-44NYK53gOAM.mp4 2.38 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/10. L6 15 Freedom From Interference Temporal-ChGZCPXko7M.mp4 2.38 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/23. Toby Ben Outro-Hzk5-lezrJk.mp4 2.37 MB
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.mp4 2.37 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/04. Linear Models Are Limited-12AYOYDrpfQ.mp4 2.37 MB
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-n9_th4V4qE4.mp4 2.36 MB
    Part 02-Module 03-Lesson 03_Markov Localization/41. Conclusion-3npZxfdrOpY.mp4 2.36 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/01. 03 Deep Learning A05 Deep Learning Foundations-Fw6cM2mpfcs.mp4 2.36 MB
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-Z1oQl-1cUeE.mp4 2.35 MB
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.mp4 2.34 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/09. 13 Q CTRV Process Noise Position-DJ_K1udemNk.mp4 2.34 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/16. L6 24 L Module Outro-QT-4yIV9dEM.mp4 2.34 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/06. L6 09 Software Safety Requirments Architecture Testing And Intergration-OJMGRtJciNI.mp4 2.33 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/22. 26 L Predict Mean And Covar-6DELFN7Fz4c.mp4 2.33 MB
    Part 06-Module 01-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.mp4 2.32 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/04. CTRV-o2HVZFSH1Fs.mp4 2.31 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-mzKPXz-Yhwk.mp4 2.31 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/06. ND013 M3 L4 05 L Kalman Filter Equations In C++-ZG8Ya-mCGhI.mp4 2.31 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/33. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.mp4 2.3 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/20. 16 L SchedulingComputeTime-N6AlIUczqRM.mp4 2.3 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/06. L4 10 Function Safety Requirements And ASIL Inheritance-oeKSXaP7Lxg.mp4 2.29 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Nd113 C6 L3 05 L Moving At 53 Degrees V2-VmoknN6xLKs.mp4 2.28 MB
    Part 03-Module 02-Lesson 05_Path Planning Project/01. 06 Path Planning A02 Planning Is Hard-15yIDPNbmWc.mp4 2.28 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python-pauohSxuCVs.mp4 2.27 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/09. State Prediction-_A0NRvmgo3w.mp4 2.27 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/01. Intro-z036GNuoiBk.mp4 2.27 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/14. Sourcing The ROS Environment-6cHlu-KVi98.mp4 2.26 MB
    Part 02-Module 03-Lesson 01_Introduction to Localization/06. Overview of the Lessons-KzvW0gkYOgo.mp4 2.26 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/07. Quick Fixes #2-It6AEuSDQw0.mp4 2.25 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/11. L6 17 Freedom From Interference Temporal Part 2-wRbGk0SwWNQ.mp4 2.25 MB
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1-cupiUHaKvdI.mp4 2.24 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/34. 32 L Parameter Hyperspace!-5a3-iIhdguc.mp4 2.23 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-4-0nBfsD4jo.mp4 2.23 MB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-LJXbHoq5EZk.mp4 2.23 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/07. 06 L A- Reminder Solution-HtQjw7qr2-o.mp4 2.22 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/04. Statistical Invariance-0Hr5YwUUhr0.mp4 2.22 MB
    Part 02-Module 04-Lesson 01_PID Control/03. Proportional Control - Artificial Intelligence for Robotics-gGo-gSFqYqg.mp4 2.2 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-w-czJptEyBk.mp4 2.19 MB
    Part 02-Module 03-Lesson 04_Motion Models/03. Motion Models-B2bXg8LaeF0.mp4 2.19 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basics Unscented Transformation-8jbckHQDl4A.mp4 2.17 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-TEAGqUkQVdM.mp4 2.16 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/07. LeNet Model Training-9580p7ZRQVY.mp4 2.16 MB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.mp4 2.15 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/34. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/28. UKF Update-pJ5XauGNclI.mp4 2.14 MB
    Part 06-Module 01-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.mp4 2.14 MB
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.mp4 2.13 MB
    Part 02-Module 04-Lesson 01_PID Control/08. PD Controller Solution - Artificial Intelligence for Robotics-YgomQgfFlTQ.mp4 2.12 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/13. Calculating Error-HiRrJYZr-0I.mp4 2.12 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-WxAO6ByCvew.mp4 2.12 MB
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.mp4 2.11 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/01. 08 System Integration A03 Communication Between Systems-a9hYIvymlkQ.mp4 2.11 MB
    Part 01-Module 04-Lesson 08_Object Detection/06. Features-u3NOabeuMjA.mp4 2.1 MB
    Part 03-Module 03-Lesson 04_Inference Performance/09. Reducing Precision-bZPG5I_igR8.mp4 2.1 MB
    Part 01-Module 04-Lesson 08_Object Detection/17. Gradient Features-cvGtDBu8ONQ.mp4 2.09 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/13. Trigonometry And Vehicle Motion-WY3T-9GHI_0.mp4 2.09 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. Formula For Cross 1-qvr_ego_d6w.mp4 2.08 MB
    Part 03-Module 03-Lesson 04_Inference Performance/04. P2-Yr_rRyEOTnM.mp4 2.08 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/08. Classsification Example-Dh625piH7Z0.mp4 2.07 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/12. Outro-ESIl11NfQ7Q.mp4 2.06 MB
    Part 03-Module 02-Lesson 03_Behavior Planning/06. 05 L Formalizing FSMs-sEZn3iZgOaI.mp4 2.06 MB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/01. 01 Introduction A01 Power Of Cameras-lCPWJEEzUeo.mp4 2.06 MB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.mp4 2.06 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/05. L2 08 L Development Interface Agreement-xF79RP2LduY.mp4 2.06 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-gbkORDbJM50.mp4 2.06 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-cUKlYjQEQGY.mp4 2.05 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy-m989etSymQQ.mp4 2.03 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/04. L3 04 L Introduction To HARA-Qxui0XShsbE.mp4 2.03 MB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/02. L5 03 Deriving Techincal Safety Requirements From Functional Safety Requirements-fVLsG83a-So.mp4 2.02 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/09. L4 18 Warning And Degradation Concept-khNhy3IwKa0.mp4 2.01 MB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/01. 04 Sensor Fusion A03 Back To Bayes Theorem-wel0ggSIT54.mp4 2.01 MB
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.mp4 1.99 MB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.mp4 1.99 MB
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough - Artificial Intelligence for Robotics-gDbpwPdStlY.mp4 1.99 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs-6UgInp_gf1w.mp4 1.98 MB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/03-gpus.png 1.97 MB
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.mp4 1.96 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/07. Message Passing-IpNp13F-TgQ.mp4 1.96 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/13. L6 18 Freedom From Interference Communication-J2T842SLPgs.mp4 1.96 MB
    Part 02-Module 04-Lesson 01_PID Control/16. Outro-zF_MUxjCl04.mp4 1.96 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95 MB
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.mp4 1.94 MB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.mp4 1.93 MB
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.mp4 1.93 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. Perceptron Algorithm--zhTROHtscQ.mp4 1.92 MB
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.mp4 1.92 MB
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.mp4 1.92 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/01. LeNet Architecture-FQYrzmnbsMs.mp4 1.91 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/22. Sensor Fusion General Processing Flow-dcTY4vRg5vo.mp4 1.91 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-swoZxkrxIB0.mp4 1.91 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/08. ROS Services-EXYmvpcOnCc.mp4 1.9 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/03. What Is Safety-o1mdbufGaq8.mp4 1.9 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/01. 04 Sensor Fusion A04 Kalman Filters In C++-Hsvzm7zDG_A.mp4 1.89 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-PxE2bbG2Hkw.mp4 1.89 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Multiclass Classification-uNTtvxwfox0.mp4 1.88 MB
    Part 02-Module 03-Lesson 03_Markov Localization/22. Implementation Details For Motion Model-O47bOcJm1eE.mp4 1.88 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/14. L6 20 System Architecture Safety Design Patterns-9q8WAW-g8jE.mp4 1.88 MB
    Part 03-Module 03-Lesson 04_Inference Performance/04. P1-Y2ggt6l7PTo.mp4 1.87 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/16. 15 L Actuator Constraints-EwcDwdM1msg.mp4 1.86 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/15. Dynamic Models - Part 4 Tire Models-OFIL0yqsV7o.mp4 1.85 MB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.mp4 1.84 MB
    Part 01-Module 04-Lesson 08_Object Detection/08. Color Features-JT4fDW7lsG8.mp4 1.84 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/03. L4 03 Functional Safety Requirements-9z5YqMYH7mY.mp4 1.83 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/09. L6 13 Freedom From Interference Spatial-HraIGQSxsQ0.mp4 1.81 MB
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.mp4 1.81 MB
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.mp4 1.79 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size-P4LwoQyJSMk.mp4 1.79 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/04. What Is Functional Safety-NeUXHSv5qz8.mp4 1.78 MB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/05. Introduction To Identify Hazards-ZzgEw7WQgTs.mp4 1.78 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/11. Laser Measurements-drbV05qKV8w.mp4 1.76 MB
    Part 06-Module 01-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.mp4 1.75 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/03. Semantic Segmentation-_L5gJnZrw48.mp4 1.74 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Vector-Qr99RXys-G0.mp4 1.74 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/04. L2 06 L Safety Management Roles And Responsibilities-5fViXy7XF0w.mp4 1.73 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/10. Nd113 C6 L3 08 L Opposite Adjacent Hypotenuse V2-hJ-7qj9iHWo.mp4 1.73 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. Quiz - Softmax-NNoezNnAMTY.mp4 1.73 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/02. L2 03 L Safety Culture-hca5xarxPVM.mp4 1.72 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/04. 04 L Building A Kinematic Model--Nnk8n81zr4.mp4 1.72 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72 MB
    Part 02-Module 04-Lesson 04_Model Predictive Control/06. Putting It All Together-CZ71uEy8EtI.mp4 1.71 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/sim-image.png 1.7 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/06. LeNet Evaluation Pipeline-cibEsIOTE60.mp4 1.69 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-ygveMIhCtDg.mp4 1.69 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/10. Skip Connections-JUYLA5PWzo0.mp4 1.69 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-JNDsm_Gzxi0.mp4 1.68 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-znlTyocTgSc.mp4 1.68 MB
    Part 02-Module 03-Lesson 04_Motion Models/04. Yaw Rate Velocity-tS7BYlCo3nU.mp4 1.67 MB
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-t2aT92C2ruA.mp4 1.66 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/23. One-Hot Encoding-AePvjhyvsBo.mp4 1.65 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.mp4 1.64 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/09. Classification Example-46PywnGa_cQ.mp4 1.62 MB
    Part 02-Module 03-Lesson 04_Motion Models/07. Odometry-IusJ3cTusp8.mp4 1.62 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/17. 16 L Frenet Reminder-u3TYp-hDojk.mp4 1.61 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/16. Turtlesim Comms List Active Nodes-J_5JTUi7sQQ.mp4 1.61 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/09. Convolutions Cont.-utOv-BKI_vo.mp4 1.6 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro to CNNs-B61jxZ4rkMs.mp4 1.6 MB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.mp4 1.59 MB
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.mp4 1.59 MB
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.mp4 1.58 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/04. L6 06 Programming Languages-KpAhkXNan7Y.mp4 1.57 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/05. Architecture Refinement-SK85D4cvwXo.mp4 1.57 MB
    Part 03-Module 02-Lesson 02_Prediction/13. 13 L Overview Of Hybrid Approaches-yCRvxI5wJS0.mp4 1.57 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/01. 03 Deep Learning A06 CNNs Have Taken Over-yNOHThuy2UU.mp4 1.56 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian-sBsju-6nQWI.mp4 1.56 MB
    Part 02-Module 03-Lesson 04_Motion Models/10. Lesson Outro-a_FvfH8OcPg.mp4 1.56 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/17. Regularization-QcJBhbuCl5g.mp4 1.56 MB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.mp4 1.56 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/26. Assignment Predict Radar Measurement-GYQeizoj09E.mp4 1.55 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/05. CTRV Integral Last 3-dcR9RtwJ6yk.mp4 1.54 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-2cD8T65E-jM.mp4 1.52 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/26. 25 L How Polynomial Trajectory Generation Works-5ZzYOqYZZ3I.mp4 1.52 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49 MB
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-oyw7WEHMvVY.mp4 1.48 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/05. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.48 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/11. FCNs In The Wild-q9wTd53-hsw.mp4 1.47 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/17. Assignment Augmentation-5p-PqtxQeM8.mp4 1.47 MB
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-q95KMAIqDDY.mp4 1.46 MB
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.mp4 1.46 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Chain Rule-YAhIBOnbt54.mp4 1.46 MB
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-8ffPkDiDioI.mp4 1.45 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/07. Prediction Step-kNthLZTHDIM.mp4 1.45 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/05. Let'S Get Started-ySIDqaXLhHw.mp4 1.45 MB
    Part 03-Module 03-Lesson 04_Inference Performance/02. Why Bother With Performance-pCg0q8qmgsk.mp4 1.44 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/42. Conclusion-m8xslYUBXYo.mp4 1.43 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/06. CTRV Integral Position-9E6K4Aw_MaI.mp4 1.43 MB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/04. 01 - Running The Simulator-rKw8md-zVno.mp4 1.42 MB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.mp4 1.42 MB
    Part 03-Module 03-Lesson 04_Inference Performance/03. L3 03 L Semantic Segmentation Revisited-xFcI26kLtiY.mp4 1.4 MB
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.mp4 1.4 MB
    Part 02-Module 03-Lesson 03_Markov Localization/30. Observation Model Intro-SDM1aVqRBCk.mp4 1.4 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/16. 15 L EnvironmentClassification-4NOvHff7WFQ.mp4 1.39 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/21. 20 L Structures Trajectory Generation Overview-N2cwqKR63x8.mp4 1.38 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-AMFig-sYGfM.mp4 1.37 MB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/09. L1 15 L On To The Code-_jhipYTqp3U.mp4 1.37 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/10. L3 20 L HARA Safety Goals-lMT1EB5cZR8.mp4 1.37 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/28. 21 Validation And Test Set V2-iC2QOiavbrw.mp4 1.36 MB
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.mp4 1.34 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/18. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33 MB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.mp4 1.33 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/04. 03 L Properties Of Motion Planning Algorithsm-lNpD43L0qvw.mp4 1.32 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/11. Supervised Classification-XTGsutypAPE.mp4 1.32 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/18. Turtlesim Comms Get Info-Y6rMQreuOL4.mp4 1.31 MB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/01. 08 System Integration A05 Closing In-mFoFGT9AtfQ.mp4 1.31 MB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/30. Validation Test Set Size Continued-cgoB-MJObmw.mp4 1.3 MB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/03. Pseudocode-JNm1fnWj5To.mp4 1.29 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-fGcozDEwnwY.mp4 1.29 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/20. Jacobian Matrix-pRhuwlMhG3o.mp4 1.29 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/10. 09 L Hybrid A- Tradeoffs Solution-6yAdF5u2B04.mp4 1.28 MB
    Part 02-Module 03-Lesson 03_Markov Localization/13. Derivation Outline-coHodx-I56U.mp4 1.28 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/24. Evaluating The Performance-1iVBYQ_KWXk.mp4 1.26 MB
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-1N3_RnTDFqU.mp4 1.26 MB
    Part 03-Module 03-Lesson 04_Inference Performance/11. Quantization Conversion-0kbFQerI86k.mp4 1.25 MB
    Part 03-Module 05-Lesson 02_Introduction to ROS/17. Turtlesim Comms Topics-46YAnfvhTMc.mp4 1.25 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/08. Kalman Filter Equations In C++ Programming-smRjTGQG2SY.mp4 1.25 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/20. Dropout Pt. 2-8nG8zzJMbZw.mp4 1.24 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/12. Dynamic Models - Part 1 Forces-KRN7GVJkFnU.mp4 1.24 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.mp4 1.23 MB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/08. LeNet Testing-NHoyQSZNWA4.mp4 1.23 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 L Hara Risk Part 3-buFLRLfwSWw.mp4 1.21 MB
    Part 03-Module 03-Lesson 03_Scene Understanding/02. Bounding Boxes-uPv4d0Xl8hc.mp4 1.2 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/01. 03 Deep Learning A07 Let'S Go Deeper-SzTpc_EWbDs.mp4 1.2 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/06. Network Of ReLUs-mJk1UvhDb1g.mp4 1.2 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Effect Last 3-DUm8e7K8qZ8.mp4 1.2 MB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.2 MB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.2 MB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.2 MB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.2 MB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/img/screen-shot-2017-10-31-at-1.06.42-pm.png 1.2 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/arch.png 1.2 MB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 Hara Risk Part 2--3EXJjR6fbk.mp4 1.2 MB
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-DV2cX9W0tT8.mp4 1.2 MB
    Part 01-Module 04-Lesson 01_Camera Calibration/img/orig-and-undist.png 1.19 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/23. Assignement Predicted Mean And Covariance-0vl_wfDpVec.mp4 1.19 MB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/03. L6 04 Hardware Failure Metrics-wlCVuAJj1xk.mp4 1.19 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/convolutionalnetworksquiz.png 1.18 MB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Solution-W4xtf8LTz1c.mp4 1.15 MB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/04. Fully Connected to 1x1 Convolution-xbPtOhkJW1A.mp4 1.15 MB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.mp4 1.14 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/07. CTRV Zero Yaw Rate-8gAsx7OAH6c.mp4 1.14 MB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/01. L4 01 L Introduction-srUVh4mBvws.mp4 1.13 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/33. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13 MB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/21. EKF Algortihm Generalization-co0ZczAuwdM.mp4 1.13 MB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/35. Non-Linear Models-HWuBKCZsCo8.mp4 1.13 MB
    Part 02-Module 03-Lesson 03_Markov Localization/12. 03.5 S How Much Data-PQV6gWuyVOs.mp4 1.13 MB
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.mp4 1.13 MB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-sudTOiG-NJo.mp4 1.1 MB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/screen-shot-2016-12-06-at-5.19.16-pm.png 1.09 MB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-2-GirRl7TqU.mp4 1.09 MB
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.mp4 1.08 MB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/03. State Vector Introduction-hLVz0YOhntA.mp4 1.08 MB
    Part 03-Module 02-Lesson 04_Trajectory Generation/29. 27 L WhatShouldBeCheckedSolution-E2TBXjyYb_Y.mp4 1.07 MB
    Part 01-Module 03-Lesson 02_MiniFlow/08. Pixels are Features!-qE5YYXtPq9U.mp4 1.06 MB
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-MhhM1uh0-3w.mp4 1.05 MB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Nd113 C6 L3 055 L Moving At 53 Degrees Solution V2-Y_3M6eeYbd8.mp4 1.05 MB
    Part 02-Module 03-Lesson 01_Introduction to Localization/04. Localization Intuition Explanation-alIgWnGBUS8.mp4 1.05 MB
    Part 02-Module 04-Lesson 03_Vehicle Models/07. Following Trajectories-sOSHaAf_7b8.mp4 1.03 MB
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.mp4 1.01 MB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/06. L2 10 L Confirmation Measures-3XiALMje_5Q.mp4 1018 KB
    Part 02-Module 03-Lesson 03_Markov Localization/23. ND013 M4 L3 15.5 Q Noise In Motion Model-zRbT36RTlhs.mp4 1008.63 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/06. Solution Housing Prices-uhdTulw9-Nc.mp4 1001.4 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.mp4 996.8 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/14. Why Neural Networks-zAkzOZntK6Y.mp4 982.27 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/thresh-x-example.png 973.41 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/thresh-mag-example.png 968.7 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature-9KAHkienFWk.mp4 960.33 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/08. L1 13 L Control Subsystem-ESIz-aSjklY.mp4 959.34 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size--2XvoG6WD9k.mp4 953.94 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. XOR Perceptron-TF83GfjYLdw.mp4 947 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/04. Additional Cost Constraints-lsdZtPPOhtk.mp4 944.14 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/highway-cars-red-white.png 930.88 KB
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.mp4 922.19 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Nd113 C6 L3 095 L Trigonometric Ratios Solution V2-c5iuVhWCOzc.mp4 918.43 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/6382486562.gif 904.26 KB
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.mp4 902.22 KB
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-i7pRvuVoWg0.mp4 891.26 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/07. Transposed Convolutions-K6mlLX8ZZDs.mp4 870.48 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-8cIlVoH5dhw.mp4 849.54 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/img/lidar-and-point-cloud.png 848.03 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-NTm_mA4akP4.mp4 842.63 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/13. Dynamic Models - Part 2 Slip Angle-oDusBbn820k.mp4 839.45 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/03. Color-Question-BdQccpMwk80.mp4 819.84 KB
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.mp4 817.3 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/01. 07 Control A01 C++ On The Vehicle-LjlgqozwzzA.mp4 815.32 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/000275.png 813.88 KB
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.mp4 812.2 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-SuGzxfoye9s.mp4 800.53 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/000528.png 799.1 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-xNPEjY4dsds.mp4 793.58 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/001240.png 791.67 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/screen-shot-2017-01-29-at-2.52.00-pm.png 782.32 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-l3zXhTxQiTs.mp4 780.78 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/screen-shot-2016-12-06-at-5.27.35-pm.png 778.72 KB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.mp4 776.82 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/02. T2 P1 EKF-d6qbR3_LPoA.mp4 773.77 KB
    Part 02-Module 01-Lesson 01_Welcome/img/sdc-term-2-v1-learning-plan-week-2.jpg 773.42 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/03. Localization Intuition-mVCSCU67D80.mp4 767.77 KB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-ebFQqd7Uhek.mp4 767.16 KB
    Part 02-Module 03-Lesson 03_Markov Localization/11. Quiz How Much Data-wzcFHAf-9lo.mp4 765.49 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-z9crz_gwGCM.mp4 756.04 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/student-quiz.png 748.98 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/10. Errors-qtg_HiqoGHY.mp4 747.45 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/img/2017-07-26-13-05-03-udacity-fusa-training-content.pptx-google-slides.png 738.75 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-vG3ahYyLHlQ.mp4 736.69 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.mp4 734.96 KB
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.mp4 734.83 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/19. One-Hot Encoding-phYsxqlilUk.mp4 732.4 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes-2_dJXh1qqe0.mp4 726.61 KB
    Part 02-Module 03-Lesson 03_Markov Localization/24. Noise In Motion Model Solution-zJ9NWz7IlOM.mp4 724.68 KB
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.mp4 716.63 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/img/6509638772.gif 711.08 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Question-lp1NrLZnCUM.mp4 708.93 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-plx_F2BkwNQ.mp4 707.99 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/6411338956.gif 705.37 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/02. CTRV-g72HXEcSQHU.mp4 694.4 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/01. 05 Localization A04 Particle Filters In C++-zL6dEu1jrH8.mp4 692.6 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/14. Dynamic Models - Part 3 Slip Ratio-kSqOJDwRFVc.mp4 692.24 KB
    Part 02-Module 01-Lesson 01_Welcome/img/sdc-term-2-v1-learning-plan-week-1.jpg 689.73 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-tkllhaHoko8.mp4 675.14 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.mp4 672.32 KB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-aBUxPyEDOWw.mp4 664.34 KB
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.mp4 661.88 KB
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.mp4 648.35 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/03. Dealing With Stopping-2gkRWj7KIMU.mp4 637.72 KB
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-17FoJwLiQkg.mp4 633.5 KB
    Part 01-Module 03-Lesson 08_Keras/img/sign.jpg 631.96 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/24. Numerical Stability-_SbGcOS-jcQ.mp4 631.89 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/img/screen-shot-2017-01-28-at-5.06.11-pm.png 631.66 KB
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.mp4 627.55 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screen-shot-2017-02-27-at-17.52.45.png 615.72 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/10. 09 Q InputsToTransitionFunctions-8jStt2d_SYc.mp4 615.34 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/and-to-or.png 606.14 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3006519007.gif 604.07 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.mp4 599.63 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/18. Regularization-Quiz-E0eEW6V0_sA.mp4 598.33 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2952958620.gif 596.23 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2949888602.gif 593.43 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/6452250634.gif 593.14 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/10. ChainRule-DxOg_olir0k.mp4 576.43 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/03. State-6vFczwAYjsU.mp4 570.92 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.mp4 569.35 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/hog-sub.jpg 561.03 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/screen-shot-2017-02-06-at-4.22.46-pm.png 557.7 KB
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.mp4 557.46 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2960808631.gif 556.05 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2950698619.gif 555.55 KB
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.mp4 555.01 KB
    Part 03-Module 01-Lesson 01_Welcome/img/sdc-term-3-week-2-learning-plan.jpg 553.71 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/05. L1 07 L Components Inputs Wrapup-f3qloIYf16k.mp4 551.11 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/06. region select-ngN9Cr-QfiI.mp4 547.75 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2950898595.gif 544.03 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/17-q-canny-intro-quiz-2.png 542.37 KB
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.mp4 540.67 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/05. Simple Arm-Ki5LkE_xir4.mp4 538.42 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-T4GbEVybNlY.mp4 533.3 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/binary-combo-img.jpg 531.28 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/screen-shot-2017-01-29-at-6.53.54-pm.png 529.51 KB
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.mp4 527.39 KB
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.mp4 523.61 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2968568545.gif 517.55 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-PaE5caOJ5kg.mp4 516.52 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2951968606.gif 512.88 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-ppSLADGROp8.mp4 502.72 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/21-i-finalize-the-bayes-localization-filter.00-01-35-19.still003.png 500.69 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/21-i-finalize-the-bayes-localization-filter.00-01-17-24.still002.png 499.59 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/21-i-finalize-the-bayes-localization-filter.00-01-00-15.still001.png 499.4 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/14-l-explain-recursive-structure-.00-01-55-15.still004.png 497.31 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2964588671.gif 496.42 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/house.png 491.52 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/20-i-markov-assumption-for-observation-model-first-try.00-01-18-09.still003.png 489.09 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2961658665.gif 487.73 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/3078258540.gif 486.58 KB
    Part 01-Module 01-Lesson 01_Welcome/img/study-group.png 486.21 KB
    Part 03-Module 01-Lesson 01_Welcome/img/study-group.png 486.21 KB
    Part 02-Module 01-Lesson 01_Welcome/img/study-group.png 486.21 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/screen-shot-2016-10-21-at-15.43.05.png 481.52 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2983928561.gif 481.37 KB
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.mp4 470.59 KB
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-GvCSZOR3hLQ.mp4 468.79 KB
    Part 03-Module 01-Lesson 01_Welcome/img/sdc-term-3-week-1-learning-plan.jpg 467.38 KB
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.mp4 463.52 KB
    assets/img/udacimak.png 461.07 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.mp4 460.53 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/img/6485174133.gif 458.07 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/14-l-explain-recursive-structure-.00-01-05-00.still003.png 457.87 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/14-l-explain-recursive-structure-.00-00-38-09.still002.png 456.47 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/14-l-explain-recursive-structure-.00-00-34-00.still001.png 453.82 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/07. L1 12 L Planning Subsystem Connections-5c752eVAR3I.mp4 453.6 KB
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-i457B5Iyg-8.mp4 449.7 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-ijy0n1EjY0M.mp4 448.34 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/img/6499079068.gif 445.94 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/img/6551597473.gif 444.36 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/retriever-patch-shifted.png 443.24 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/3380638551.gif 442.34 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/media/unnamed-111674-0.gif 436.4 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/retriever-patch.png 435.51 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2979408584.gif 430.54 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2962768598.gif 428 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8TqVHRan4Fo.mp4 423.53 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/regularization-quiz.png 420.85 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/20-i-markov-assumption-for-observation-model-first-try.00-00-22-16.still001.png 418.19 KB
    Part 03-Module 05-Lesson 05_System Integration Project/img/screen-shot-2017-12-14-at-4.42.24-pm.png 416.5 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/20-i-markov-assumption-for-observation-model-first-try.00-00-36-11.still002.png 414.36 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/thresh-grad-dir-example.jpg 412.28 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2965848544.gif 406.45 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/or-quiz.png 393.62 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2954798550.gif 391.7 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie-GkqOdgZnkig.mp4 391.26 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2961648618.gif 381.38 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/base-hot-enc.png 370.17 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2989458548.gif 364.14 KB
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-yTV3JPJk1kE.mp4 360.3 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/screen-shot-2016-11-22-at-4.44.32-pm.png 356.22 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/06-l-apply-bayes-rule-with-additional-conditions.00-02-12-10.still004.png 350.7 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2966188568.gif 349.76 KB
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.mp4 345.3 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/vlcsnap-2016-11-24-16h01m35s262.png 341.28 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2949098585.gif 340.13 KB
    Part 03-Module 06-Lesson 01_Completing the Program/img/screen-shot-2018-07-16-at-1.39.49-pm.png 339.47 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/teeth-whiskers-tongue.png 331.9 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/06-l-apply-bayes-rule-with-additional-conditions.00-01-30-28.still002.png 331.57 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/06-l-apply-bayes-rule-with-additional-conditions.00-01-48-09.still003.png 330.98 KB
    Part 03-Module 02-Lesson 02_Prediction/img/naive-bayes.png 328.01 KB
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.mp4 327.03 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/vlcsnap-2016-10-26-21h47m38s028.png 326.05 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/img/7905614952.gif 325.46 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/boston-back-bay-reflection.jpg 317.9 KB
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.mp4 317.07 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-career-service-example.png 314.98 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/20-i-markov-assumption-for-observation-model-first-try.00-03-23-08.still004.png 306.93 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2953828563.gif 306.59 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/screenshot-2016-11-03-12.52.54.png 302.46 KB
    index.html 299.78 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/screen-shot-2016-10-26-at-19.28.34.png 297.79 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/img/7910014174.gif 297.1 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-03-28-at-12.31.17-pm.png 294.32 KB
    Part 03-Module 03-Lesson 01_Elective Advanced Deep Learning/img/scene-understanding.png 292.12 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/img/7881207114.gif 291.28 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2967388588.gif 288.79 KB
    Part 06-Module 01-Lesson 06_Graphs/media/unnamed-69567-0.gif 288.7 KB
    Part 06-Module 01-Lesson 06_Graphs/img/7919804788.gif 288.7 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2946788593.gif 286.77 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-05-09-at-4.56.29-pm.png 286.2 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/layers.png 286.1 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2971928572.gif 285.85 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/vlcsnap-2016-11-24-15h52m47s438.png 280.29 KB
    Part 02-Module 04-Lesson 01_PID Control/media/unnamed-280340-instructor-note-0.gif 277.83 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/warped-curved-lines.jpg 276.79 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/img/undist-and-warp.png 271.04 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/and-quiz.png 265.78 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/14-l-explain-recursive-structure-.00-02-36-09.still005.png 265.06 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/3070498540.gif 264.96 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/img/lane-drawn.jpg 262.75 KB
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.mp4 261.23 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/05. T2 P1 UKF-klDOvr29KfM.mp4 260.64 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-06.png 259.12 KB
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.mp4 255.57 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/hls-binary.jpg 255.27 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-04.png 255.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2978708547.gif 254.09 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/gpu.jpg 253.75 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/gpu.jpg 253.75 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/gpu.jpg 253.75 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/08-alexnet-1.png 253.25 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-01.png 251.26 KB
    Part 06-Module 01-Lesson 05_Trees/img/tree-traversal-practice.jpg 246.95 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Quiz 5-upKjISd3aBk.mp4 246.75 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/hog-visualization.jpg 244.96 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2975648542.gif 242.42 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-10.png 241.76 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-08.png 241.57 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/3062568546.gif 239.14 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/color-shadow-example.jpg 238.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2981638553.gif 237.5 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/screenshot-2016-11-04-22.20.14.png 236.33 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2953038697.gif 235.26 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-07.png 233.3 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/img/mpc-image.png 232.95 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/perceptron-graphics.001.jpeg 232.64 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-05.png 232.52 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3005108633.gif 232.41 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/img/point-grey.jpeg 232.14 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/camera.jpeg 232.14 KB
    assets/js/katex.min.js 231.26 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/mag-binary.jpg 230.25 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-03.png 228.93 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/manual-bbox-quiz-output.jpg 228.77 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-09.png 228.05 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6.jpg 226.65 KB
    Part 03-Module 04-Lesson 01_Elective Functional Safety/img/introduction.png 226.63 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3011218770.gif 224.92 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/dog-1210559-1280.jpg 222.96 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/02-guide-how-transfer-learning-v3-02.png 219.27 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/bbox-example-image.jpg 215.33 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/xor.png 214.95 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/multi-layer.png 214.34 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/img/7889679710.gif 213.75 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/warped-straight-lines.jpg 212.18 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/software-requirement-hierarchy-01.png 206.65 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/hough_test.jpg 205.83 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/hough-test.jpg 205.83 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/miniflow-nn-graph.001.jpeg 201.28 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/hq-new-plot-perceptron-combine-v2.png 200.83 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2945308595.gif 198.79 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/10-q-quiz-slide-v2.png 197.96 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/img/7890272657.gif 197.57 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test4.jpg 196.48 KB
    Part 01-Module 04-Lesson 07_Decision Trees/img/2946858588.gif 195.2 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2974078571.gif 193.42 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3006108749.gif 193.14 KB
    Part 06-Module 01-Lesson 05_Trees/img/7900766165.gif 190.73 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/img/7883232307.gif 189.42 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/media/unnamed-5101-0.gif 188.8 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-03-27-at-12.49.50-pm.png 186.73 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/gpu-enable.png 183.79 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/cutouts.jpg 183 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/sliding-window.jpg 182.09 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2983168537.gif 180.81 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/exit_ramp_hough_masked.jpg 179.14 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3027018593.gif 179.12 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/rgb-histogram-plot.jpg 177.13 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/img/multi-vehicle-bbox.jpg 176.84 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/exit_ramp_edges.jpg 172.4 KB
    Part 01-Module 03-Lesson 02_MiniFlow/media/input-to-output-2.mp4 172.03 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/binary-combo-example.jpg 170.61 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.49.43-pm.png 165.6 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/10. 09 S InputsToTransitionFunctions-AjMSl8zR-P0.mp4 163.83 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/example-neural-network.png 163.05 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/l6-outline-of-material-presented-so-far-software-hardware-01.png 162.07 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/screen-shot-2016-11-22-at-4.35.48-pm.png 159.33 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/img/cv-l2-4.1.001.png 155.8 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/image30.png 153.61 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/lines_painted.png 153.61 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6s-channel.jpg 152.88 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test4s-channel.jpg 148.67 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/img/05-tailoring-the-safety-lifcycle-image-01-1024.png 148.22 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/img/05-tailoring-the-safety-lifcycle-image-01-1024.png 148.22 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-submit.png 146.2 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6h-channel.jpg 146.08 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2941178604.gif 145.92 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-gpu.png 145.5 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/test.jpg 143.83 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-notebook.png 142.9 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-body-good.png 140.03 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/screen-shot-2017-01-28-at-11.49.20-am.png 139.42 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2945548572.gif 138.02 KB
    Part 03-Module 05-Lesson 05_System Integration Project/img/workspace-home.png 138 KB
    assets/css/bootstrap.min.css 137.64 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2969508540.gif 136.54 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/img/1-c-advanced-techniques-for-lane-finding2x.jpg 133.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.mp4 133.02 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/pasted-image-at-2016-10-25-01-24-pm.png 129.99 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/edges-exitramp.jpg 129.95 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/car-not-car-examples.jpg 128.38 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3010848726.gif 128.13 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/filter-depth.png 127.76 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/car-and-hog.jpg 127.49 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test4h-channel.jpg 127.41 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/img/corners-found3.jpg 126.74 KB
    assets/js/plyr.polyfilled.min.js 126.16 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/img/2972018562.gif 125.64 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/curved-lane.jpg 125.32 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6hls.jpg 123.44 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6rgb.jpg 122.86 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/02-l-pseudocode.00-00-35-08.still004.png 122.51 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/02-l-pseudocode.00-00-30-05.still003.png 122.4 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/cutout1.jpg 121.95 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test4gray.jpg 121.17 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/img/refined-architecture-01.png 120.97 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/02-l-pseudocode.00-00-16-01.still002.png 120.63 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/img/3006318739.gif 120.35 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/02-l-pseudocode.00-00-40-01.still005.png 119.57 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/img/refined-system-architecture-01.png 119.52 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/02-l-pseudocode.00-00-14-28.still001.png 119.22 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/2-9-introduction-to-localization2x.jpg 118.92 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/1-4-introduction-to-neural-networks2x.jpg 118.8 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screenshot-from-2017-02-27-19-56-58.png 118.56 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/img/l5-outline-of-material-presented-so-far-01.png 118.14 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/06. Path Planning Project Walkthrough and QA-7sI3VHFPP0w.en.vtt 118.13 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/running-turtlesim.png 117.65 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/hq-perceptron.png 115.94 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/22-l-bayes-filter-theory-summary.00-00-22-29.still001.png 115.52 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6gray.jpg 115.37 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/screen-shot-2017-01-28-at-12.39.43-pm.png 113.83 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/img/screen-shot-2017-04-18-at-2.33.20-pm.png 113.47 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/09-l-update-step.00-00-17-03.still001.png 112.26 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/img/refined-architecture-03.png 111.33 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/22-l-bayes-filter-theory-summary.00-00-52-03.still002.png 111.16 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/img/06b.png 110.88 KB
    Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2018-06-12-at-4.42.50-pm.png 109.77 KB
    Part 03-Module 01-Lesson 01_Welcome/img/screen-shot-2018-06-12-at-4.42.50-pm.png 109.77 KB
    Part 02-Module 01-Lesson 01_Welcome/img/screen-shot-2018-06-12-at-4.42.50-pm.png 109.77 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/asil.jpg 109.68 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test4r-channel.jpg 109.26 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/img/screen-shot-2017-02-03-at-2.08.26-pm.png 109.2 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/roscore-starting.png 107.73 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/topological-sort.001.jpeg 107.27 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/test6r-channel.jpg 105.64 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/06. Path Planning Project Walkthrough and QA-7sI3VHFPP0w.zh-CN.vtt 105 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/sobelx-binary.jpg 102.41 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/img/camera-freespace-redline.png 102.1 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/warped-example.jpg 101.96 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48750007.gif 101.71 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/23-q-hough-second-quiz-copy.png 99.26 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/03-l-initialization.00-01-53-01.still001.png 99.17 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/refined-system-architecture-l6-01.png 98.44 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/img/systems-int-3.png 98.34 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/grayscale.jpg 98.27 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48740087.gif 97.69 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/img/18-reducing-risk-with-systems-engineering-03.png 97.26 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/img/18-reducing-risk-with-systems-engineering-02.png 97.06 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/05-l-predictionstep.00-00-38-28.still001.png 96.06 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/02-l-pseudocode.00-00-47-13.still006.png 95.92 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/07-l-data-association-nearest-neighbor.00-00-17-03.still003.png 95.68 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/img/systems-int-2.png 94.7 KB
    Part 05-Module 01-Lesson 02_LinkedIn Review/media/unnamed-project-desc-0.gif 94.58 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png 94.14 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-menu.png 93.96 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/exit-ramp.jpg 93.92 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/exit-ramp.jpg 93.92 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png 93.69 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/test.jpg 92.61 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/img/02-l-vehicle-models-static-animation-later-01.png 91.17 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48683735.gif 89.87 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/img/18-reducing-risk-with-systems-engineering-01.png 89.72 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-06.png 88.92 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/hist-compare.jpg 88.8 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/img/162524.gif 87.99 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/screen-shot-2017-01-29-at-7.11.18-pm.png 87.46 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/img/02-l-vehicle-models-static-animation-later-02.png 87.45 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screenshot-from-2017-02-27-19-08-41.png 87.22 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/car-color-and-hist.jpg 86.02 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/screen-shot-2017-04-07-at-12.08.14-pm.png 85.8 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/img/l4-outline-of-material-present-so-far-01.png 85.39 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-new.png 85.21 KB
    assets/js/jquery-3.3.1.min.js 84.89 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48734092.gif 84.7 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/img/02-v-model-text-01.png 84.43 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/02-v-model-text-01.png 84.43 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/img/technical-safety-concept-hierarchy-01.png 84.27 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/img/screen-shot-2016-12-01-at-3.10.19-pm.png 84.22 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/algorithm-generalization-900.jpg 84.06 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-jupyter.png 83.54 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/img/screen-shot-2017-05-10-at-10.01.48-am.png 83.16 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/23-q-hough-second-quiz.png 82.18 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/22-q-hough-intro-quiz.png 81.9 KB
    Part 03-Module 01-Lesson 01_Welcome/img/review-screenshot.png 81.62 KB
    Part 01-Module 01-Lesson 01_Welcome/img/review-screenshot.png 81.62 KB
    Part 02-Module 01-Lesson 01_Welcome/img/review-screenshot.png 81.62 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screenshot-2016-11-26-17.52.14.png 81.55 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/guassian-abc.png 81.2 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/img/18-reducing-risk-with-systems-engineering-04.png 81.2 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48699547.gif 81.13 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/limit-request.png 79.93 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/limit-request.png 79.93 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/limit-request.png 79.93 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/matrix-mult-3.png 78.97 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48737024.gif 77.58 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48684714.gif 77.55 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48738105.gif 77.13 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/img/screen-shot-2017-02-03-at-1.39.23-pm.png 77.03 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screenshot-from-2017-02-27-19-06-36.png 77.01 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspace-paste-ex.png 76.97 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48673630.gif 76.33 KB
    Part 03-Module 02-Lesson 01_Search/img/48738127.gif 75.22 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/img/07-l-errors-02.png 74.89 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/img/screenshot-from-2017-02-27-20-45-49.png 74.59 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48665994.gif 72.56 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48687765.gif 72.53 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/02-advanced-driver-assistance-system-architecture-01.png 71.97 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/02-v-model-text-02.png 71.59 KB
    Part 02-Module 03-Lesson 03_Markov Localization/img/obs-model-measurements-pseudoranges.png 70.14 KB
    Part 03-Module 02-Lesson 01_Search/img/48722135.gif 70.07 KB
    assets/css/fonts/KaTeX_AMS-Regular.ttf 69.75 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/02-advanced-driver-assistance-system-architecture-02-1.png 69.59 KB
    Part 03-Module 02-Lesson 01_Search/img/48736143.gif 69.3 KB
    Part 03-Module 02-Lesson 01_Search/img/48667982.gif 69.13 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/addition-graph.png 68.97 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48658914.gif 68.92 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48658988.gif 68.44 KB
    assets/css/fonts/KaTeX_Main-Regular.ttf 68.43 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48716197.gif 68.15 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48660994.gif 67.36 KB
    Part 03-Module 02-Lesson 01_Search/img/48700499.gif 67.14 KB
    Part 03-Module 02-Lesson 01_Search/img/48667989.gif 66.67 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/color-fit-lines.jpg 66.47 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/screen-shot-2018-02-07-at-2.39.45-pm.png 66.13 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48532602.gif 66.02 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-intro-good.png 65.95 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/alexnet-team.jpg 65.93 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/example-after-bias.png 65.72 KB
    Part 03-Module 05-Lesson 05_System Integration Project/img/final-project-ros-graph-v2.png 65.65 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48734150.gif 65.62 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-03.png 65.42 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48720159.gif 65.33 KB
    Part 03-Module 02-Lesson 01_Search/img/48667985.gif 65.11 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48641532.gif 64.74 KB
    Part 03-Module 02-Lesson 01_Search/img/48735020.gif 64.63 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.50.54-pm.png 64.61 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48738099.gif 64.25 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48735019.gif 64.13 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/convolution-schematic.gif 63.63 KB
    Part 01-Module 01-Lesson 01_Welcome/12. The Great Robot Race-saVZ_X9GfIM.en.vtt 63.38 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/points.png 63.17 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48687753.gif 62.91 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/screen-shot-2016-12-01-at-4.50.36-pm.png 62.83 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-02.png 62.79 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/pasted-image-at-2016-10-25-01-17-pm.png 62.75 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48728188.gif 62.74 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/dropout-node.jpeg 62.69 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48720151.gif 62.53 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-07-1.png 62.49 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-good-conclusion.png 62.32 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48734084.gif 62.11 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48740028.gif 62.06 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/car-identified.jpg 61.82 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/add-security-group.png 61.02 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/add-security-group.png 61.02 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/add-security-group.png 61.02 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/carnd-using-multiple-cameras.png 60.77 KB
    Part 02-Module 03-Lesson 05_Particle Filters/img/48665986.gif 60.43 KB
    assets/css/fonts/KaTeX_Main-Bold.ttf 60.27 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/02-v-model-text-03.png 59.78 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48684624.gif 59.77 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-01.png 59.7 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/network-with-labeled-weights.png 59.44 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48734087.gif 59.44 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/g2.2xlarge.png 58.65 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/g2.2xlarge.png 58.65 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/g2.2xlarge.png 58.65 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48271826.gif 58.65 KB
    Part 01-Module 01-Lesson 01_Welcome/12. The Great Robot Race-saVZ_X9GfIM.zh-CN.vtt 58.12 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/screen-shot-2017-01-27-at-9.47.14-am.png 57.76 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.49.08-pm.png 57.32 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/02-advanced-driver-assistance-system-architecture-03-1.png 57.32 KB
    Part 01-Module 01-Lesson 01_Welcome/img/stanley.jpg 57.3 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48722168.gif 57.29 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/p3-sim.png 57.12 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/localization-map-concept-copy.png 55.47 KB
    Part 03-Module 03-Lesson 01_Elective Advanced Deep Learning/img/fully-convolutional-networks.png 55.45 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/img/car-ppc-gif.gif 54.48 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-03-27-at-12.48.49-pm.png 54.29 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/notmnist.png 54.15 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/25-q-hough-fourth-quiz-updated2.png 54.07 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/heirarchy-diagram.jpg 53.61 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48738043.gif 53.17 KB
    Part 02-Module 03-Lesson 02_Localization Overview/img/48733100.gif 52.83 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/softmax-input-output.png 52.45 KB
    Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2016-10-24-at-5.24.45-pm.png 52.42 KB
    Part 03-Module 01-Lesson 01_Welcome/img/screen-shot-2016-10-24-at-5.24.45-pm.png 52.42 KB
    Part 02-Module 01-Lesson 01_Welcome/img/screen-shot-2016-10-24-at-5.24.45-pm.png 52.42 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48667873.gif 52.41 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/severity-exposure-controllability-02.png 52.19 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48667899.gif 52.14 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/network-with-labeled-nodes.png 52 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48741027.gif 51.93 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/input-times-weights.png 51.82 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/spatial-binning.jpg 51.49 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48738007.gif 51.33 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/48684703.gif 51.25 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/miniflow.jpg 51.1 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/severity-exposure-controllability-01.png 50.43 KB
    assets/js/bootstrap.min.js 49.85 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-03-27-at-12.58.28-pm.png 49.57 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/02. ADL Project Walkthrough V2-5g9sZIwGubk.en.vtt 49.38 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/technical-requirements-to-software-requirements-map-01.png 49.36 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/driving-log-output.png 49.31 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/02. Functional Safety Walkthrough-SsXNj_pfnao.en.vtt 49.13 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/ec2-service-limits.png 48.68 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/ec2-service-limits.png 48.68 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/ec2-service-limits.png 48.68 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/multilayer-diagram-weights.png 48.57 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-5.png 48.42 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/img/e2e-protocol-01.png 48.36 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/img/screen-shot-2017-12-14-at-3.11.32-pm.png 47.91 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-4.png 47.7 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/stop.png 47.54 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/stop.png 47.54 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/stop.png 47.54 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-04.png 47.02 KB
    Part 01-Module 01-Lesson 02_Workspaces/img/workspaces-terminal.png 46.91 KB
    assets/css/fonts/KaTeX_Main-Italic.ttf 46.83 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/layer-1-grid.png 45.73 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/img/l4-asil-decomposition-graphic-01.png 45.7 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/screen-shot-2017-01-28-at-11.21.09-am.png 45.56 KB
    assets/js/jquery.mCustomScrollbar.concat.min.js 44.41 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/scikit-image-logo.png 44.33 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/pid-error.png 43.98 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/img/pid-error.png 43.98 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/img/pid-error.png 43.98 KB
    assets/css/fonts/KaTeX_Main-BoldItalic.ttf 43.77 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/severity-exposure-controllability-03.png 43.52 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/02. ADL Project Walkthrough V2-5g9sZIwGubk.zh-CN.vtt 43.43 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/21. Implement Behavior Planner in C++.html 42.47 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/test_color_selected.jpg 42.33 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/cover-letter-intro-bad.png 42.28 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/l1-20-04.png 42.13 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/img/rosl2.png 41.9 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/02. Functional Safety Walkthrough-SsXNj_pfnao.zh-CN.vtt 41.89 KB
    assets/css/jquery.mCustomScrollbar.min.css 41.83 KB
    assets/css/fonts/KaTeX_Math-Italic.ttf 40.48 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/img/tracking-abc.png 39.88 KB
    assets/css/fonts/KaTeX_AMS-Regular.woff 39.26 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/screen-shot-2017-02-14-at-8.29.09-pm.png 39.08 KB
    assets/css/fonts/KaTeX_Math-BoldItalic.ttf 38.81 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/system-hierarchy-03-1.png 38.76 KB
    assets/css/fonts/KaTeX_Main-Regular.woff 38.52 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screenshot-from-2017-02-27-19-14-14.png 37.97 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/22. Implement Behavior Planner in C++ (solution).html 37.87 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/screen-shot-2018-05-15-at-10.50.08-am.png 37.85 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/screen-shot-2018-05-15-at-10.50.08-am.png 37.85 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/screen-shot-2018-05-15-at-10.50.08-am.png 37.85 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/img/udacitylogo-copy.png 37.69 KB
    Part 02-Module 04-Lesson 01_PID Control/img/twiddle.png 37.1 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/maxpool.jpeg 37.07 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/example-before-bias.png 36.91 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/hara-outline-01.png 36.47 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/l1-20-03.png 36.22 KB
    assets/css/fonts/KaTeX_Main-Bold.woff 35.89 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/wx-b.jpg 35.72 KB
    assets/css/fonts/KaTeX_Typewriter-Regular.ttf 35.46 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/softmax.png 35.34 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/grid-layer-1.png 35.3 KB
    assets/css/fonts/KaTeX_Fraktur-Bold.ttf 35.13 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/gpu-instances.png 35.03 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/gpu-instances.png 35.03 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/gpu-instances.png 35.03 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/img/window-result2.png 34.21 KB
    Part 01-Module 04-Lesson 08_Object Detection/34. Search and Classify.html 34.13 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/img/screen-shot-2017-09-04-at-2.07.44-pm.png 34.07 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/udacity-carnd-ami.png 34.07 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/udacity-carnd-ami.png 34.07 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/udacity-carnd-ami.png 34.07 KB
    Part 02-Module 04-Lesson 01_PID Control/img/pid.png 33.86 KB
    assets/css/fonts/KaTeX_Fraktur-Regular.ttf 33.84 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/img/ls.png 33.84 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/storage-size.png 33.78 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/storage-size.png 33.78 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/storage-size.png 33.78 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/img/screenshot-from-2017-02-27-20-35-58.png 33.68 KB
    assets/css/fonts/KaTeX_SansSerif-Bold.ttf 33.23 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/environment-compare.png 33.11 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/img/prediction-and-behavior-1.jpg 33.11 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/img/02.png 32.45 KB
    assets/css/fonts/KaTeX_AMS-Regular.woff2 32.43 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/img/05-i-length-of-trajectory-and-timestep-duration-02.png 32.15 KB
    assets/css/fonts/KaTeX_Main-Regular.woff2 32.09 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/maxresdefault.jpg 31.86 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/situational-analysis-hazard-identification-05.png 31.3 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/img/screen-shot-2017-12-11-at-5.53.05-pm.png 31.25 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/img/codecogseqn-6.gif 31.25 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/relu-network.png 31.09 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/session.png 30.85 KB
    Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2018-07-27-at-1.24.38-pm.png 30.85 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/img/screen-shot-2018-07-27-at-1.24.38-pm.png 30.85 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/ec2-dashboard.png 30.74 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/ec2-dashboard.png 30.74 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/ec2-dashboard.png 30.74 KB
    Part 01-Module 03-Lesson 02_MiniFlow/13. Backpropagation.html 30.59 KB
    assets/css/fonts/KaTeX_SansSerif-Italic.ttf 30.57 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/38. AWS GPU Instances.html 30.39 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/l1-20-02.png 30.29 KB
    assets/css/fonts/KaTeX_Main-Bold.woff2 29.9 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/img/07-l-errors-03.png 29.77 KB
    assets/css/fonts/KaTeX_SansSerif-Regular.ttf 29.45 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/media/unnamed-135397-0.gif 28.81 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/img/screen-shot-2017-12-11-at-5.41.28-pm.png 28.74 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/35. Quiz Mini-batch.html 28.54 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/23.png 28.41 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screenshot-from-2017-02-27-19-02-34.png 27.97 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/wx-1.jpg 27.75 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/06-l-supervised-classification-391-1.jpg 27.68 KB
    Part 03-Module 02-Lesson 02_Prediction/img/prediction-1.jpg 27.29 KB
    Part 02-Module 04-Lesson 01_PID Control/img/pd.png 27.26 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/02. AWS GPU Instances.html 27.02 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/04. AWS GPU Instances.html 27.01 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/original-image.jpg 26.88 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/img/figure-1.png 26.88 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/l1-20-05.png 26.66 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/img/screen-shot-2017-12-15-at-11.14.19-am.png 26.62 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/key-pair.png 26.57 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/key-pair.png 26.57 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/key-pair.png 26.57 KB
    assets/css/fonts/KaTeX_Main-Italic.woff 26.56 KB
    Part 03-Module 02-Lesson 02_Prediction/img/prediction-2.jpg 26.46 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/gradient-descent-convergence.gif 26.35 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/heaviside-step-graph-2.png 26.27 KB
    assets/css/fonts/KaTeX_Main-BoldItalic.woff 25.61 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/gradient-descent-divergence.gif 25.56 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/img/prediction-and-behavior-2.jpg 25.25 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/max-pooling.png 25.19 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/img/untitled-presentation-1.png 24.86 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/img/untitled-presentation-2.png 24.75 KB
    Part 03-Module 05-Lesson 05_System Integration Project/06. SDC Capstone Portfolio Part 1 V1 V2-6GIFyUzhaQo.en.vtt 24.67 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/weights-0-1-2.png 24.61 KB
    Part 02-Module 03-Lesson 03_Markov Localization/27. Motion Model Probability II.html 24.59 KB
    Part 01-Module 03-Lesson 02_MiniFlow/14. Stochastic Gradient Descent.html 24.39 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.51.47-pm.png 24.32 KB
    assets/css/fonts/KaTeX_Script-Regular.ttf 24.28 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/13. Perceptrons II.html 24.2 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/l1-20-01.png 24.16 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/38. Multilayer Perceptrons.html 24.05 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/img/06.png 23.74 KB
    assets/css/plyr.css 23.62 KB
    Part 02-Module 03-Lesson 03_Markov Localization/39. Coding the Full Filter.html 23.46 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/scaled-features-vis.jpg 23.3 KB
    assets/css/fonts/KaTeX_Math-Italic.woff 23.26 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/04. Finding the Lines Sliding Window.html 23.1 KB
    assets/css/fonts/KaTeX_Fraktur-Bold.woff 22.84 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-1.png 22.78 KB
    Part 02-Module 03-Lesson 03_Markov Localization/34. Observation Model Probability.html 22.75 KB
    assets/css/fonts/KaTeX_Math-BoldItalic.woff 22.65 KB
    Part 02-Module 03-Lesson 03_Markov Localization/40. Solution Coding the Full Filter.html 22.61 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/launch-instance.png 22.52 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/launch-instance.png 22.52 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/launch-instance.png 22.52 KB
    assets/css/fonts/KaTeX_Main-Italic.woff2 22.52 KB
    assets/css/fonts/KaTeX_Fraktur-Regular.woff 22.31 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/07. Software Safety Requirements Lane Departure Warning.html 21.99 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/media/test_color_masked.jpg 21.94 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/13. Laser Measurements Part 3.html 21.93 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/image14.png 21.93 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-10.05.46-pm.png 21.93 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-2.png 21.85 KB
    Part 03-Module 05-Lesson 05_System Integration Project/08. SDC Capstone Portfolio Part 2 V2-kdfXo6atphY.en.vtt 21.83 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-08-18-at-7.42.10-pm.png 21.79 KB
    assets/css/fonts/KaTeX_Main-BoldItalic.woff2 21.67 KB
    Part 01-Module 03-Lesson 02_MiniFlow/08. Linear Transform.html 21.58 KB
    assets/css/katex.min.css 21.56 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/img/untitled-presentation-3.png 21.19 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/14. TensorFlow Linear Function.html 21.03 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/img/untitled-presentation.png 20.48 KB
    assets/css/fonts/KaTeX_Typewriter-Regular.woff 20.43 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/center-2017-02-06-16-20-04-855-flipped.jpg 20.36 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/mnist-012.png 20.21 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/img/system-hierarchy-01.png 20.2 KB
    Part 02-Module 01-Lesson 01_Welcome/img/screen-shot-2018-06-12-at-4.42.45-pm.png 20.05 KB
    Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2018-06-12-at-4.42.45-pm.png 20.05 KB
    Part 03-Module 01-Lesson 01_Welcome/img/screen-shot-2018-06-12-at-4.42.45-pm.png 20.05 KB
    assets/css/fonts/KaTeX_Fraktur-Bold.woff2 20.01 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/screen-shot-2016-12-06-at-6.26.30-pm.png 19.99 KB
    assets/css/fonts/KaTeX_Math-Italic.woff2 19.95 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/15. Implement Hybrid A in C++ (solution).html 19.91 KB
    Part 01-Module 03-Lesson 02_MiniFlow/15. SGD Solution.html 19.86 KB
    Part 01-Module 04-Lesson 08_Object Detection/28. Color Classify.html 19.75 KB
    Part 03-Module 02-Lesson 02_Prediction/img/prediction-3.jpg 19.62 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. Perceptrons as Logical Operators.html 19.6 KB
    assets/css/fonts/KaTeX_Math-BoldItalic.woff2 19.57 KB
    assets/css/fonts/KaTeX_Fraktur-Regular.woff2 19.39 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/screenshot-from-2017-03-02-14-58-15.png 19.18 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-7.png 19.15 KB
    Part 05-Module 01-Lesson 02_LinkedIn Review/media/unnamed-project-desc-1.gif 19.15 KB
    assets/css/fonts/KaTeX_Caligraphic-Bold.ttf 19.13 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/31. Convolutional Network in TensorFlow.html 19.03 KB
    Part 06-Module 01-Lesson 06_Graphs/12. Graph Traversal Practice.html 19 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/14. Implement Hybrid A in C++.html 18.89 KB
    Part 01-Module 04-Lesson 08_Object Detection/20. scikit-image HOG.html 18.84 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/05. Finding the Lines Search from Prior.html 18.8 KB
    assets/css/fonts/KaTeX_SansSerif-Bold.woff 18.72 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/20. Project Workspace Instructions.html 18.7 KB
    Part 01-Module 04-Lesson 08_Object Detection/35. Hog Sub-sampling Window Search.html 18.56 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/novnc.png 18.55 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/img/novnc.png 18.55 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/img/novnc.png 18.55 KB
    assets/css/fonts/KaTeX_Caligraphic-Regular.ttf 18.52 KB
    Part 03-Module 05-Lesson 05_System Integration Project/10. SDC Capstone Portfolio Part 3 V1 V1-oTfArPhstQU.en.vtt 18.3 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/img/prediction-and-behavior-1.png 18.25 KB
    Part 01-Module 03-Lesson 02_MiniFlow/10. Cost.html 18.07 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/04. Transfer Learning.html 18.06 KB
    Part 03-Module 02-Lesson 02_Prediction/16. Implement Naive Bayes C++.html 18.03 KB
    Part 02-Module 03-Lesson 03_Markov Localization/07. Calculate Localization Posterior.html 18.02 KB
    Part 01-Module 04-Lesson 08_Object Detection/22. Combine and Normalize Features.html 17.82 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/img/capture.png 17.79 KB
    assets/css/fonts/KaTeX_SansSerif-Italic.woff 17.7 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/29. UKF Update Assignment 1.html 17.69 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/cropped-image.jpg 17.66 KB
    Part 01-Module 03-Lesson 02_MiniFlow/09. Sigmoid Function.html 17.64 KB
    Part 01-Module 04-Lesson 08_Object Detection/37. Multiple Detections False Positives.html 17.62 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/17. Augmentation Assignment 1.html 17.53 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/echo-to-bashrc.png 17.5 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/07. Kalman Filter Equations in C++ Part 1.html 17.48 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/img/example.png 17.48 KB
    Part 03-Module 05-Lesson 05_System Integration Project/12. SDC Capstone Portfolio Part 4 V1-2tDrj8KjIL4.en.vtt 17.33 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/07. Measuring Curvature I.html 17.31 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/06. A - Artificial Intelligence for Robotics-lxCCtgHk5Vs.ru.vtt 17.3 KB
    Part 03-Module 02-Lesson 01_Search/14. A-lxCCtgHk5Vs.ru.vtt 17.3 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/source-setup.png 17.28 KB
    Part 01-Module 04-Lesson 08_Object Detection/29. HOG Classify.html 17.16 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/img/two-layer-network.png 17.15 KB
    assets/css/fonts/KaTeX_Typewriter-Regular.woff2 17.13 KB
    Part 03-Module 02-Lesson 02_Prediction/img/prediction.jpg 17.13 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/14. Laser Measurements Part 4.html 17.02 KB
    Part 02-Module 03-Lesson 03_Markov Localization/25. Determine Probabilities.html 17.02 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/20. Sigma Point Prediction Assignment 1.html 16.96 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/26. Predict Radar Measurement Assignment 1.html 16.93 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/img/screen-shot-2017-12-13-at-11.30.25-am.png 16.92 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/30. UKF Update Assignment 2.html 16.89 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data.html 16.71 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/30. Gradient Descent.html 16.66 KB
    Part 01-Module 04-Lesson 08_Object Detection/09. Template Matching.html 16.64 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/09. Solution Mind The Line.html 16.63 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/create-an-aws-account.png 16.62 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/create-an-aws-account.png 16.62 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/create-an-aws-account.png 16.62 KB
    Part 01-Module 01-Lesson 01_Welcome/img/screen-shot-2016-10-23-at-12.50.15-pm.png 16.59 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/08. Arm Mover The Code.html 16.58 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/08. Reducing Risk with Systems Engineering.html 16.57 KB
    Part 02-Module 03-Lesson 03_Markov Localization/37. Coding the Observation Model.html 16.55 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/14. Generating Sigma Points Assignment 1.html 16.43 KB
    assets/css/fonts/KaTeX_SansSerif-Regular.woff 16.39 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/17. Perceptron Algorithm.html 16.38 KB
    Part 02-Module 03-Lesson 03_Markov Localization/38. Solution Coding the Observation Model.html 16.37 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/21. Sigma Point Prediction Assignment 2.html 16.16 KB
    Part 03-Module 02-Lesson 02_Prediction/17. Implement Naive Bayes C++ (solution).html 16.15 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/37. Epochs.html 16.11 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/18. Augmentation Assignment 2.html 16.03 KB
    Part 02-Module 03-Lesson 03_Markov Localization/28. Coding the Motion Model.html 15.95 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/img/building-a-model.png 15.95 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/23. Predicted Mean and Covariance Assignment 1.html 15.86 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/17. Visualizing CNNs.html 15.82 KB
    Part 02-Module 03-Lesson 03_Markov Localization/05. Bayes' Rule.html 15.77 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/review-and-launch.png 15.75 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/review-and-launch.png 15.75 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/review-and-launch.png 15.75 KB
    Part 02-Module 03-Lesson 03_Markov Localization/29. Solution Coding the Motion Model.html 15.71 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/img/steering-angle-100.png 15.68 KB
    assets/css/fonts/KaTeX_SansSerif-Bold.woff2 15.62 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/14. Save and Restore TensorFlow Models.html 15.57 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Transform.html 15.49 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/tf.jpeg 15.42 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/img/steering-angle-500.png 15.42 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/27. Predict Radar Measurement Assignment 2.html 15.38 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/21. EKF Algorithm Generalization.html 15.35 KB
    Part 01-Module 03-Lesson 02_MiniFlow/05. Forward Propagation.html 15.33 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/16. Quiz Landmarks.html 15.32 KB
    Part 01-Module 04-Lesson 08_Object Detection/12. Histograms of Color.html 15.23 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/31. Parameters and Consistency.html 15.22 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/24. Predicted Mean and Covariance Assignment 2.html 15.21 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/19. Jacobian Matrix Part 1.html 15.13 KB
    Part 01-Module 04-Lesson 08_Object Detection/19. Data Exploration.html 15.02 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/12. Look Away The Code.html 14.94 KB
    Part 02-Module 03-Lesson 03_Markov Localization/35. Get Pseudo Ranges.html 14.93 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/13. Environment Setup (Windows).html 14.88 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices.html 14.86 KB
    assets/css/fonts/KaTeX_SansSerif-Italic.woff2 14.86 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/07. Filters.html 14.77 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/02. Advanced Driver Assistance System.html 14.7 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/08. Measuring Curvature II.html 14.69 KB
    Part 01-Module 04-Lesson 08_Object Detection/32. Sliding Window Implementation.html 14.59 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/img/center-2017-02-06-16-20-04-855.jpg 14.5 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/img/hard-steering.png 14.48 KB
    Part 01-Module 04-Lesson 08_Object Detection/16. Spatial Binning of Color.html 14.44 KB
    Part 02-Module 03-Lesson 03_Markov Localization/36. Solution Get Pseudo Ranges.html 14.43 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/05. Project Instructions.html 14.39 KB
    Part 01-Module 04-Lesson 08_Object Detection/05. Manual Vehicle Detection.html 14.29 KB
    Part 01-Module 03-Lesson 02_MiniFlow/07. Learning and Loss.html 14.23 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/05. Simple Mover The Code.html 14.16 KB
    Part 03-Module 05-Lesson 05_System Integration Project/04. Project Overview.html 14.16 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/15. Generating Sigma Points Assignment 2.html 14.15 KB
    Part 02-Module 03-Lesson 03_Markov Localization/31. Markov Assumption for Observation Model.html 14.15 KB
    Part 03-Module 03-Lesson 01_Elective Advanced Deep Learning/img/nvidia.png 14.13 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/Project Rubric - Advanced Lane Finding.html 14.13 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/05. MISRA C++ Lab.html 14.12 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/06. Intuition.html 14.11 KB
    Part 02-Module 03-Lesson 03_Markov Localization/14. Apply Bayes Rule with Additional Conditions.html 14.07 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/10. Parameters.html 14.04 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/08. Mind The Line.html 13.97 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/15. Radar Measurements.html 13.96 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/10. Process Covariance Matrix.html 13.92 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/09. Project Instructions for workspaces.html 13.9 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/img/02b.jpeg 13.9 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/07. Arm Mover.html 13.85 KB
    Part 01-Module 01-Lesson 01_Welcome/img/waffle-yellow-on-blue.png 13.84 KB
    Part 03-Module 01-Lesson 01_Welcome/img/waffle-yellow-on-blue.png 13.84 KB
    Part 02-Module 01-Lesson 01_Welcome/img/waffle-yellow-on-blue.png 13.84 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/08. Kalman Filter Equations in C++ Part 2.html 13.83 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/09. Automotive Safety Integrity Levels (ASIL).html 13.83 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/27. Implement Quintic Polynomial Solver C++.html 13.79 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/new-wx-b-2.jpg 13.77 KB
    assets/css/fonts/KaTeX_SansSerif-Regular.woff2 13.7 KB
    Part 01-Module 04-Lesson 08_Object Detection/15. Explore Color Spaces.html 13.68 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program - Artificial Intelligence for Robotics-TPIFP4E7DVo.ru.vtt 13.67 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/04. CTRV Differential Equation.html 13.67 KB
    Part 03-Module 02-Lesson 02_Prediction/02. IO Recap.html 13.67 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/02. Project Instructions.html 13.62 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/img/screenshot-2016-11-04-22.20.24.png 13.56 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.en-US.vtt 13.54 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.en.vtt 13.54 KB
    assets/css/fonts/KaTeX_Script-Regular.woff 13.53 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/04. Project Instructions.html 13.53 KB
    Part 03-Module 05-Lesson 05_System Integration Project/Project Description - Programming a Real Self-Driving Car.html 13.52 KB
    Part 01-Module 03-Lesson 02_MiniFlow/06. Forward Propagation Solution.html 13.51 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Neural Network Architecture.html 13.45 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/16. Compiling and Running the Project.html 13.42 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/06. Installing TensorFlow.html 13.41 KB
    Part 02-Module 03-Lesson 03_Markov Localization/32. Finalize the Bayes Localization Filter.html 13.36 KB
    Part 02-Module 03-Lesson 03_Markov Localization/08. Initialize Belief State.html 13.34 KB
    Part 02-Module 03-Lesson 03_Markov Localization/26. Motion Model Probabiity I.html 13.34 KB
    Part 01-Module 04-Lesson 08_Object Detection/27. Parameter Tuning.html 13.29 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/13. Hybrid A Pseudocode.html 13.29 KB
    Part 02-Module 03-Lesson 03_Markov Localization/10. Solution Initialize Priors Function.html 13.28 KB
    Part 06-Module 01-Lesson 06_Graphs/08. Graph Representation Practice.html 13.24 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/03. Tips and Tricks for the Project.html 13.23 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/Project Rubric - Resume Review Project (Career Change).html 13.23 KB
    Part 03-Module 03-Lesson 04_Inference Performance/img/viz.png 13.2 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/Project Rubric - Resume Review Project (Entry-level).html 13.19 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/06. Project Code.html 13.19 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. Softmax.html 13.16 KB
    Part 02-Module 03-Lesson 03_Markov Localization/20. Recursive Structure.html 13.14 KB
    Part 01-Module 03-Lesson 02_MiniFlow/17. Under the Hood Part 2.html 13.14 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/13. Freedom from Interference - Communication.html 13.09 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/31. Gradient Descent The Code.html 13.03 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Backpropagation.html 13.02 KB
    Part 03-Module 02-Lesson 02_Prediction/12. Summary of Data Driven and Model Based Approaches.html 13.01 KB
    Part 01-Module 03-Lesson 02_MiniFlow/11. Gradient Descent Part 1.html 12.99 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/Project Rubric - Resume Review Project (Prior Industry Experience).html 12.97 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/07. ASIL Decomposition.html 12.94 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/02. Sobel Operator.html 12.93 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/14. Source the ROS Environment.html 12.92 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/13. Your Virtual Machine.html 12.88 KB
    Part 02-Module 04-Lesson 01_PID Control/14. Parameter Optimization.html 12.87 KB
    assets/css/fonts/KaTeX_Size1-Regular.ttf 12.86 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error.html 12.84 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move.html 12.83 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/10. The Full V Model.html 12.81 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/10. HLS and Color Thresholds.html 12.8 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/01. Tips and Tricks for the Project.html 12.77 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/edit-security-group.png 12.76 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/edit-security-group.png 12.76 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/edit-security-group.png 12.76 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/17. Quiz Softmax.html 12.75 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-10.05.37-pm.png 12.74 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/05. Introduction to Identifying Hazards.html 12.72 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/32. What to Expect from the Project.html 12.71 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/img/image34.png 12.68 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/14. Logging.html 12.68 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/06. Kalman Filter Intuition.html 12.67 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/07. Identification of Hazards.html 12.66 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. Perceptron Trick.html 12.64 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Vector.html 12.63 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/Project Rubric - Behavioral Cloning.html 12.52 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/12. Color and Gradient.html 12.52 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/09. Introduction to ISO 26262.html 12.51 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel.html 12.48 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/12. Deep Neural Network in TensorFlow.html 12.46 KB
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution.html 12.45 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/03. Project Instructions.html 12.45 KB
    Part 03-Module 02-Lesson 01_Search/14. A-lxCCtgHk5Vs.ja.vtt 12.44 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/06. A - Artificial Intelligence for Robotics-lxCCtgHk5Vs.ja.vtt 12.44 KB
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2.html 12.43 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/04. Project instructions Workspaces.html 12.42 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/10. Turtlesim Overview.html 12.38 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/14. Implement a Cost Function in C++.html 12.38 KB
    Part 05-Module 01-Lesson 02_LinkedIn Review/Project Rubric - LinkedIn Profile Review Project.html 12.38 KB
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise.html 12.38 KB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle.html 12.37 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/03. Hardware Failure Metrics.html 12.36 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/12. Canny to Detect Lane Lines.html 12.33 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.51.51-pm.png 12.33 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense.html 12.29 KB
    Part 03-Module 05-Lesson 05_System Integration Project/07. DBW Node.html 12.29 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/13. Using Multiple Cameras .html 12.29 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/Project Rubric - Extended Kalman Filters.html 12.26 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/04. Magnitude of the Gradient.html 12.24 KB
    Part 03-Module 05-Lesson 05_System Integration Project/09. Traffic Light Detection Node.html 12.21 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight.html 12.2 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/08. Color Thresholding.html 12.2 KB
    Part 03-Module 05-Lesson 05_System Integration Project/05. Waypoint Updater Node (Partial).html 12.16 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/17. Extended Kalman Filter.html 12.16 KB
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot.html 12.16 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/18. Generators.html 12.15 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/08. Quiz Tensorflow Input.html 12.15 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/09. Quiz Tensorflow Math.html 12.13 KB
    assets/css/fonts/KaTeX_Size2-Regular.ttf 12.12 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/16. Implement a Second Cost Function in C++.html 12.11 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/01. Introduction.html 12.1 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/08. Lab AlexNet.html 12.1 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/04. What is Functional Safety.html 12.1 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/02. Intro to Extended Kalman Filter Project.html 12.08 KB
    Part 03-Module 05-Lesson 05_System Integration Project/03. Getting Started.html 12.08 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/13. Example Cost Function - Lane Change Penalty.html 12.08 KB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles.html 12.07 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/07. Linked List Practice.html 12.06 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/36. Lab LeNet in TensorFlow.html 12.03 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/32. TensorFlow Convolution Layer.html 12 KB
    assets/css/fonts/KaTeX_Script-Regular.woff2 11.99 KB
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles.html 11.97 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/screen-shot-2017-01-29-at-5.23.31-pm.png 11.96 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/28. Implement Quintic Polynomial Solver Solution.html 11.94 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/18. Quiz TensorFlow Softmax Workspaces.html 11.93 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/06. Another Sliding Window Search.html 11.93 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/img/screen-shot-2017-05-10-at-10.01.56-am.png 11.92 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/Project Rubric - Vehicle Detection and Tracking.html 11.91 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/25. Lab Solution - Feature Extraction with Cifar10.html 11.89 KB
    Part 02-Module 03-Lesson 03_Markov Localization/09. Initialize Priors Function.html 11.89 KB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion.html 11.88 KB
    Part 01-Module 01-Lesson 01_Welcome/05. Nanodegree Support.html 11.87 KB
    Part 02-Module 04-Lesson 01_PID Control/04. Implement P Controller.html 11.87 KB
    Part 01-Module 03-Lesson 02_MiniFlow/12. Gradient Descent Part 2.html 11.86 KB
    Part 02-Module 03-Lesson 03_Markov Localization/03. Localization Posterior Introduction.html 11.86 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz.html 11.85 KB
    assets/css/fonts/KaTeX_Caligraphic-Bold.woff 11.85 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/18. Undistort and Transform.html 11.81 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/screen-shot-2018-04-03-at-10.14.31-am.png 11.81 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/img/figure-1.png 11.81 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/15. Lab Solution - Training the Feature Extractor.html 11.78 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Moving at 53.13 Degrees.html 11.75 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/11. Project Instructions for local setup.html 11.74 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree.html 11.73 KB
    Part 01-Module 04-Lesson 08_Object Detection/31. How many windows.html 11.73 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.pt-BR.vtt 11.73 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/19. Quiz Particle Weights.html 11.72 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements.html 11.71 KB
    Part 02-Module 04-Lesson 01_PID Control/07. PD Controller.html 11.7 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/img/cte1.png 11.68 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3.html 11.66 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/02. The CTRV Model.html 11.66 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/07. Hello, Tensor World!.html 11.64 KB
    Part 02-Module 04-Lesson 01_PID Control/11. PID implementation.html 11.63 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search-7WbRB7dSyvc.zh-CN.vtt 11.63 KB
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution.html 11.59 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size.html 11.59 KB
    assets/css/fonts/KaTeX_Caligraphic-Regular.woff 11.59 KB
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function.html 11.56 KB
    Part 01-Module 04-Lesson 07_Decision Trees/09. Decision Tree Accuracy.html 11.55 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison.html 11.5 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. Cross-Entropy 2.html 11.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1.html 11.49 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2.html 11.49 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/05. Direction of the Gradient.html 11.46 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/05. Allocation of Requirements to System Architecture Elements.html 11.43 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/Project Rubric - Traffic Sign Classifier.html 11.42 KB
    Part 02-Module 03-Lesson 03_Markov Localization/17. Markov Assumption for Motion Model Quiz.html 11.41 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/15. Hough Transform to Find Lane Lines.html 11.39 KB
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split.html 11.39 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function.html 11.38 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split.html 11.37 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/img/career-portal-sidebar.png 11.37 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/img/career-portal-sidebar.png 11.37 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/img/career-portal-sidebar.png 11.37 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/img/career-portal-sidebar.png 11.37 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/img/career-portal-sidebar.png 11.37 KB
    Part 02-Module 03-Lesson 03_Markov Localization/02. Overview.html 11.37 KB
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split.html 11.36 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2.html 11.34 KB
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss.html 11.34 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy.html 11.32 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/Project Rubric - Functional Safety of a Lane Assistance System.html 11.32 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/05. CTRV Integral 1.html 11.32 KB
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution.html 11.3 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. Risk Assessment, Severity, Exposure, Controllability.html 11.29 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/07. CTRV Zero Yaw Rate.html 11.29 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/07. Tips and Tricks.html 11.29 KB
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities.html 11.29 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature Map Sizes.html 11.28 KB
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function.html 11.28 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/03. Applying Sobel.html 11.25 KB
    Part 02-Module 03-Lesson 03_Markov Localization/33. Bayes Filter Theory Summary.html 11.25 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/neilsen-pic.png 11.25 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/03. Pseudocode.html 11.23 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path.html 11.22 KB
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000.html 11.22 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function.html 11.22 KB
    Part 02-Module 03-Lesson 03_Markov Localization/06. Bayes' Filter For Localization.html 11.21 KB
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice.html 11.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz.html 11.18 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function.html 11.17 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/05. Estimation Problem Refresh.html 11.17 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/07. IoU Quiz.html 11.17 KB
    Part 03-Module 02-Lesson 01_Search/14. A-lxCCtgHk5Vs.en.vtt 11.16 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/06. A - Artificial Intelligence for Robotics-lxCCtgHk5Vs.en.vtt 11.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters.html 11.15 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/Project Rubric - Unscented Kalman Filters.html 11.14 KB
    Part 02-Module 03-Lesson 03_Markov Localization/11. Quiz How Much Data.html 11.12 KB
    Part 03-Module 02-Lesson 01_Search/15. Implement A.html 11.12 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood.html 11.12 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. More Data Collection .html 11.1 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/03. The CTRV Model State Vector.html 11.09 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs Continuous.html 11.05 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/21. Quiz TensorFlow Dropout.html 11.04 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/20. TensorFlow Max Pooling.html 11.03 KB
    assets/css/fonts/KaTeX_Size4-Regular.ttf 11.02 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/10. Errors.html 10.99 KB
    Part 02-Module 01-Lesson 01_Welcome/02. Nanodegree Support.html 10.99 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/09. State Prediction.html 10.99 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/03. Project Workspace Instructions.html 10.98 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/04. Building a Kinematic Model.html 10.98 KB
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum.html 10.98 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/15. Finetuning.html 10.97 KB
    Part 02-Module 03-Lesson 03_Markov Localization/23. Noise in Motion Model Quiz.html 10.94 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/09. Running Your Network .html 10.92 KB
    Part 02-Module 03-Lesson 03_Markov Localization/30. Observation Model Introduction.html 10.91 KB
    Part 03-Module 02-Lesson 02_Prediction/08. Frenet Coordinates.html 10.88 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/06. CTRV Integral 2.html 10.85 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/11. Laser Measurements Part 1.html 10.84 KB
    Part 03-Module 05-Lesson 05_System Integration Project/14. Project Submission and Getting Feedback.html 10.77 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/img/02c.jpeg 10.77 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/14. Environment Setup (Linux).html 10.77 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/06. Situational Analysis.html 10.76 KB
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split.html 10.75 KB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5.html 10.74 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/06. Project instructions Local Setup.html 10.73 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/06. Confirmation Measures.html 10.72 KB
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3.html 10.72 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/07. Pinhole Camera Model.html 10.7 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5.html 10.7 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/09. Arm Mover Launch and Interact.html 10.68 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Maximizing Probabilities.html 10.67 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/12. Correcting for Distortion.html 10.67 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy.html 10.66 KB
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2.html 10.66 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/save-2.png 10.66 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy.html 10.66 KB
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting.html 10.63 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/18. TensorFlow Convolution Layer.html 10.63 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/10. Stack Practice.html 10.62 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/34. TensorFlow Pooling Layer.html 10.62 KB
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3.html 10.62 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. Logistic Regression.html 10.6 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy.html 10.59 KB
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8.html 10.59 KB
    Part 01-Module 03-Lesson 02_MiniFlow/04. MiniFlow Architecture.html 10.59 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/03. Project Code.html 10.58 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/16. Hough Transform.html 10.58 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/12. uWebSocketIO Starter Guide.html 10.58 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/33. Polynomial Trajectory Generation Playground.html 10.56 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/09. CTRV Process Noise Position.html 10.54 KB
    Part 03-Module 05-Lesson 05_System Integration Project/img/dbw-node-ros-graph.png 10.53 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions.html 10.53 KB
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1.html 10.52 KB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10.html 10.52 KB
    Part 03-Module 05-Lesson 05_System Integration Project/13. Project Workspace Instructions.html 10.51 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/07. FSM Intuition.html 10.51 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Trigonometric Ratios.html 10.51 KB
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6.html 10.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1.html 10.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9.html 10.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2.html 10.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4.html 10.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data.html 10.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split.html 10.49 KB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1.html 10.47 KB
    Part 01-Module 03-Lesson 02_MiniFlow/03. Graphs.html 10.45 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test.html 10.44 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/03. Understanding Output.html 10.43 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/24. Lab Feature Extraction with Cifar10.html 10.43 KB
    Part 02-Module 03-Lesson 03_Markov Localization/19. After Applying Markov Assumption Quiz.html 10.42 KB
    Part 02-Module 03-Lesson 03_Markov Localization/21. Lesson Breakpoint.html 10.41 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/06. ROS Services.html 10.39 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/06. A Reminder.html 10.38 KB
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3.html 10.37 KB
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4.html 10.37 KB
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2.html 10.37 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/20. Log-loss Error Function.html 10.37 KB
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7.html 10.37 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/05. Python Practice.html 10.36 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/03. Finding the Lines Histogram Peaks.html 10.36 KB
    assets/css/fonts/KaTeX_Caligraphic-Bold.woff2 10.35 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/09. Challenge 4.html 10.33 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/18. Multivariate Taylor Series Expansion.html 10.33 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program Solution - Artificial Intelligence for Robotics-cl8Kdkr4Gbg.ru.vtt 10.32 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/03. Project Resources.html 10.32 KB
    Part 03-Module 05-Lesson 05_System Integration Project/img/waypoint-updater-ros-graph.png 10.31 KB
    Part 01-Module 03-Lesson 02_MiniFlow/16. Under the Hood Part 1.html 10.31 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/08. Color Region.html 10.29 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness.html 10.29 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz.html 10.29 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/36. Quiz 2 Mini-batch.html 10.29 KB
    Part 03-Module 01-Lesson 01_Welcome/02. Nanodegree Support.html 10.28 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/20. Trajectory Matching.html 10.28 KB
    Part 01-Module 03-Lesson 08_Keras/06. Neural Networks in Keras.html 10.28 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/12. Solution Convolution Output Shape.html 10.25 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz.html 10.23 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction.html 10.22 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/02. V model.html 10.22 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. Feedforward.html 10.2 KB
    Part 02-Module 03-Lesson 03_Markov Localization/18. Markov Assumption for Motion Model Explanation.html 10.19 KB
    assets/css/fonts/KaTeX_Caligraphic-Regular.woff2 10.17 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/w-nk.png 10.13 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/17. Landmarks Quiz Solution.html 10.1 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/16. Linear Update.html 10.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices.html 10.07 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/08. Classification Problems 1.html 10.04 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/12. Hybrid A Heuristics.html 10.04 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/22. Lab VGG, Inception (GoogLeNet) and ResNet.html 10.04 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/24. Evaluating KF Performance 2.html 10.02 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/05. Quiz Housing Prices.html 10.02 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/11. Higher Dimensions.html 10.02 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/Project Rubric - Udacity Professional Profile Review.html 10.01 KB
    Part 03-Module 02-Lesson 01_Search/14. A-lxCCtgHk5Vs.zh-CN.vtt 10 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/06. A - Artificial Intelligence for Robotics-lxCCtgHk5Vs.zh-CN.vtt 10 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/03. Lesson Map and Fusion Flow.html 9.99 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-3.png 9.99 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/28. Multi-Class Cross Entropy.html 9.97 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/12. Perceptrons.html 9.97 KB
    Part 01-Module 04-Lesson 08_Object Detection/25. Data Preparation.html 9.97 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/33. Solution TensorFlow Convolution Layer.html 9.96 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2.html 9.95 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/23. Quiz Pooling Mechanics.html 9.94 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/Project Rubric - Craft Your Cover Letter.html 9.91 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/14. Cropping Images in Keras .html 9.9 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/15. Quiz Parameter Sharing.html 9.9 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/01. Intro to Unscented Kalman Filter Project.html 9.89 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/13. Lab Solution - Feature Extraction.html 9.88 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/10. Transition to Classification.html 9.88 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/media/nmn.png 9.87 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/11. Calibrating Your Camera.html 9.86 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/05. Main.cpp.html 9.86 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/11. Challenge 5.html 9.85 KB
    Part 02-Module 03-Lesson 03_Markov Localization/16. Total Probability and Markov Assumption.html 9.85 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/39. Intro TensorFlow Neural Network .html 9.84 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/08. Project Resources.html 9.84 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/24. Quiz Numerical Stability.html 9.84 KB
    Part 01-Module 04-Lesson 08_Object Detection/10. Template Matching Quiz.html 9.81 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/03. Project Expectations.html 9.8 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/04. Color Selection Code Example.html 9.8 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/03. Other Types of Technical Safety Requirements.html 9.8 KB
    Part 02-Module 03-Lesson 03_Markov Localization/01. Return to Bayes' Rule.html 9.79 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile.html 9.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.ru.vtt 9.79 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/01. Introduction.html 9.76 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program.html 9.76 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/20. Quiz One-Hot Encoding.html 9.76 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/11. Quiz Convolution Output Shape.html 9.76 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/13. Calculating Error.html 9.75 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/13. Quiz Number of Parameters.html 9.74 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code.html 9.74 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3.html 9.73 KB
    Part 03-Module 03-Lesson 04_Inference Performance/05. Freezing Graphs.html 9.73 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/23. Evaluating KF Performance Part 1.html 9.71 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/29. What should be checked.html 9.7 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/03. Create a Workspace.html 9.68 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians.html 9.68 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/20. Particle Weights Solution.html 9.67 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/10. Linear Boundaries.html 9.66 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2.html 9.66 KB
    Part 06-Module 01-Lesson 05_Trees/11. Binary Tree Practice.html 9.65 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/04. A Note on Deep Learning.html 9.64 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction.html 9.64 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/15. Run Turtlesim.html 9.63 KB
    Part 02-Module 03-Lesson 03_Markov Localization/15. Bayes Rule and Law of Total Probability.html 9.62 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/07. Planning Subsystem Components.html 9.59 KB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy.html 9.59 KB
    Part 02-Module 03-Lesson 03_Markov Localization/04. Localization Posterior Explanation and Implementation.html 9.58 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM.html 9.56 KB
    Part 02-Module 03-Lesson 03_Markov Localization/22. Implementation Details for Motion Model.html 9.56 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/23. Lab Cifar10 Aside.html 9.56 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/img/screen-shot-2017-03-27-at-2.35.01-pm.png 9.55 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/35. Solution TensorFlow Pooling Layer.html 9.55 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/02. Getting Started.html 9.55 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/07. Linear to Logistic Regression.html 9.55 KB
    Part 01-Module 01-Lesson 02_Workspaces/01. Introduction to Workspaces.html 9.53 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/04. Safety Management Roles and Responsibilities.html 9.52 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/03. What is Safety.html 9.52 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.en-US.vtt 9.51 KB
    Part 02-Module 03-Lesson 03_Markov Localization/24. Noise in Motion Model Solution.html 9.51 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.en.vtt 9.51 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/40. Lab Neural Network Workspaces.html 9.49 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/img/soble-operator.png 9.49 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/07. Coding-zhQYREUI8Z0.en-US.vtt 9.48 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/03. More Complex Paths.html 9.48 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/15. Quiz Linear Function.html 9.48 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/19. Recording Video in Autonomous Mode.html 9.48 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/07. Coding-zhQYREUI8Z0.en.vtt 9.47 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/06. Region Masking.html 9.47 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.bn.vtt 9.47 KB
    Part 02-Module 03-Lesson 03_Markov Localization/12. How Much Data Explanation.html 9.46 KB
    Part 01-Module 04-Lesson 08_Object Detection/03. Finding Cars.html 9.45 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/20. Jacobian Matrix Part 2.html 9.45 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/08. States for Self Driving Cars.html 9.45 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/20. Error Functions-jfKShxGAbok.en.vtt 9.45 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/31. Parameters And Consistency-S4fX3X_9oik.en.vtt 9.45 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability.html 9.44 KB
    Part 02-Module 03-Lesson 03_Markov Localization/13. Derivation Outline.html 9.44 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/05. Global Kinematic Model.html 9.44 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Moving at an Angle.html 9.41 KB
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling.html 9.39 KB
    Part 02-Module 03-Lesson 03_Markov Localization/41. Conclusion.html 9.39 KB
    Part 01-Module 04-Lesson 08_Object Detection/13. Histogram Comparison.html 9.39 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization.html 9.37 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/11. Visualizing Layers.html 9.36 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/12. Laser Measurements Part 2.html 9.35 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/27. Transition Overfitting - Dataset Size.html 9.35 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/11. Efficiency Practice.html 9.34 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/03. Item Definition.html 9.33 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/21. Quiz Pooling Intuition.html 9.33 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/03. Data File.html 9.33 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma.html 9.33 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/25.png 9.32 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/05. Program Gaussian Sampling Code.html 9.32 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/06. Program Gaussian Sampling Code Solution.html 9.32 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/01. Deep Learning Frameworks.html 9.31 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/Project Description - Path Planning Project.html 9.31 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/30. Validation Test Set Size Continued.html 9.31 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/03. What is Deep Learning.html 9.31 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature.html 9.3 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/25. Quiz Pooling Practice.html 9.3 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/32. Perceptron vs Gradient Descent.html 9.3 KB
    Part 01-Module 04-Lesson 08_Object Detection/07. Feature Intuition.html 9.3 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/10. Finding Corners.html 9.3 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines.html 9.29 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/18. Quiz Association.html 9.27 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/10. Safety Goals.html 9.27 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/19. Cost Function Matching.html 9.26 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/05. 1x1 Convolution Quiz .html 9.25 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/23. Practical Aspects of Learning.html 9.25 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/03. Color.html 9.25 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/09. Hybrid A Tradeoffs.html 9.25 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/28. Lab Transfer Learning Summary.html 9.24 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature.html 9.22 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/08. Fitting Polynomials.html 9.22 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/17. Visualizing Loss.html 9.22 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/10. Commit messages best practices.html 9.21 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion.html 9.21 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/38. CNNs - Additional Resources.html 9.21 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/06. Software Safety Life-cycle.html 9.2 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/25. Normalized Inputs and Initial Weights.html 9.19 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/31. Optimizing a Logistic Classifier.html 9.19 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/33. Momentum and Learning Rate Decay.html 9.18 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/01. Neural Network Intuition.html 9.17 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/07. Introduction to Evaluating Risks.html 9.17 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/13. Training Your Logistic Classifier.html 9.17 KB
    Part 05-Module 01-Lesson 02_LinkedIn Review/01. Using LinkedIn.html 9.17 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/18. 14 L CostFunctionDesignWeightTweaking-NK6SP-r4dGs.en.vtt 9.16 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/04. Solving Problems - Big and Small.html 9.16 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/01. Introduction.html 9.16 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/26. Cross-Entropy 1.html 9.16 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers.html 9.15 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/32. Stochastic Gradient Descent.html 9.15 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/21. Cross Entropy.html 9.15 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/3.png 9.15 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/27. Quiz Average Pooling.html 9.15 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/20. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/22. Minimizing Cross Entropy.html 9.14 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/04. File Structure.html 9.14 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/28. Validation and Test Set Size.html 9.14 KB
    Part 06-Module 01-Lesson 05_Trees/14. BST Practice.html 9.14 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program - Artificial Intelligence for Robotics-TPIFP4E7DVo.en.vtt 9.13 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program.html 9.13 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance.html 9.13 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/41. Create Your Own NN.html 9.13 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter.html 9.13 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/40. Further Reading.html 9.12 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/26. Measuring Performance.html 9.12 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/37. LeNet Lab Workspace.html 9.12 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/11. Supervised Classification.html 9.11 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/34. Parameter Hyperspace! .html 9.11 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins.html 9.11 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/11. Look Away.html 9.1 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2.html 9.1 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid.html 9.1 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/04. Allocation to the Architecture.html 9.1 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter.html 9.1 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program - Artificial Intelligence for Robotics-TPIFP4E7DVo.ja.vtt 9.09 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice.html 9.09 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak.html 9.08 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction.html 9.08 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/05. Let's Get Started!.html 9.08 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions.html 9.08 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/12. Let's make a deal.html 9.08 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/05. Recursion Practice.html 9.08 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/11. Behavior Planning Pseudocode.html 9.08 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function.html 9.07 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/06. Python The Basics.html 9.06 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting.html 9.06 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/22. Solution Pooling Intuition.html 9.06 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/09. Convolutions continued.html 9.06 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/19. One-Hot Encoding.html 9.05 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/10. Inputs to Transition Functions.html 9.05 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma.html 9.05 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature.html 9.04 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface.html 9.04 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/09. Warning and Degradation Concept.html 9.03 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/10. UKF Process Chain.html 9.03 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/08. Quiz TensorFlow ReLu.html 9.03 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/02. Introduction to Deep Neural Networks.html 9.02 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line.html 9.02 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/04. Technical Safety Requirement Attributes.html 9.02 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/x-mn.png 9.02 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean.html 9.02 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/05. Color Selection.html 9.01 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/19. How I Did It.html 9.01 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/05. Write the Body.html 9 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/edit-storage.png 9 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/edit-storage.png 9 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/edit-storage.png 9 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton.html 8.99 KB
    Part 01-Module 04-Lesson 08_Object Detection/18. HOG Features.html 8.99 KB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses.html 8.98 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/24. Solution Pooling Mechanics.html 8.96 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/09. Classification Problems 2.html 8.96 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/05. Challenge 2.html 8.96 KB
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees.html 8.96 KB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy.html 8.96 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/03. Python Dictionaries.html 8.96 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/33. Continuous Perceptrons.html 8.96 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/14. Why Neural Networks.html 8.95 KB
    Part 03-Module 02-Lesson 02_Prediction/10. More on Process Models.html 8.94 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png 8.94 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2.html 8.94 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary.html 8.94 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces.html 8.94 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/01. CNNs Have Taken Over.html 8.93 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/22. Share your success - Behavioral Cloning.html 8.93 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/18. Non-Linear Regions.html 8.93 KB
    Part 03-Module 03-Lesson 04_Inference Performance/04. Interlude Using The AMI.html 8.93 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.pt-BR.vtt 8.92 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/10. Lab Traffic Sign Inference.html 8.92 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/35. Non-Linear Models.html 8.92 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/Project Rubric - Path Planning Project.html 8.92 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/01. Introduction.html 8.92 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basics Unscented Transformation.html 8.92 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update.html 8.92 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian.html 8.92 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/04. Simple Mover.html 8.92 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/23. One-Hot Encoding.html 8.92 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/19. Error Functions.html 8.91 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/34. Non-linear Data.html 8.91 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro To CNNs.html 8.91 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/03. ROS Publishers.html 8.91 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian.html 8.9 KB
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters.html 8.9 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/img/launch.png 8.9 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/launch.png 8.9 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/img/launch.png 8.9 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/06. ASIL Inheritance.html 8.9 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/10. Tuning MPC.html 8.89 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/03. Starting Machine Learning.html 8.89 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/09. Solution Fitting Polynomials.html 8.89 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/11. HLS Quiz.html 8.88 KB
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain.html 8.88 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/07. Transposed Convolutions.html 8.88 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/04. Programming Languages.html 8.88 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. Canny Edge Detection.html 8.87 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/16. Solution Parameter Sharing.html 8.86 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions.html 8.86 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/07. Challenge 3.html 8.85 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/07. A Reminder Solution.html 8.85 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/09. Freedom from Interference - Spatial.html 8.85 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/06. Solution Housing Prices.html 8.84 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/15. Environment Setup (Mac).html 8.84 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/Project Rubric - Optimize Your GitHub Profile.html 8.83 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/02. Introduction to Deep Learning.html 8.83 KB
    Part 01-Module 01-Lesson 01_Welcome/06. Career Support.html 8.81 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/32. Polynomial Trajectory Reading (optional).html 8.8 KB
    Part 02-Module 03-Lesson 02_Localization Overview/16. Lesson Breakpoint.html 8.79 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/02. Tips and Tricks.html 8.79 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/16. Turtlesim Comms List Nodes.html 8.79 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data.html 8.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability.html 8.79 KB
    Part 03-Module 05-Lesson 05_System Integration Project/img/tl-detector-ros-graph.png 8.78 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/10. String Keys Practice.html 8.76 KB
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency.html 8.76 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/42. Summary.html 8.75 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/03. Functional Safety Requirements.html 8.75 KB
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality.html 8.75 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/codecogseqn-13.gif 8.75 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/19. Explore The Design Space.html 8.75 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/22. Predicted Mean and Covariance.html 8.74 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/01. From Behavior to Trajectory.html 8.74 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/04. Statistical Invariance.html 8.74 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/05. Convolutional Networks.html 8.74 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/04. Customizing Your Profile.html 8.73 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/14. Solution Number of Parameters.html 8.72 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/04. Running the Simulator .html 8.72 KB
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space.html 8.72 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/11. Dynamic Models.html 8.71 KB
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate.html 8.7 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/30. Inception Module.html 8.7 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/29. 1x1 Convolutions.html 8.7 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/11. Lab Solution - Traffic Sign Inference.html 8.67 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units.html 8.67 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/07. Color and Region Combined.html 8.67 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/01. Introduction.html 8.66 KB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-SSyvcCZKlqo.ru.vtt 8.66 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule.html 8.65 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/01. Project Introduction.html 8.64 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/08. Hybrid A Introduction.html 8.63 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/12. Lab Feature Extraction.html 8.63 KB
    Part 01-Module 04-Lesson 08_Object Detection/40. Traditional vs. Deep Learning Approach.html 8.63 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/02. Processing Each Image.html 8.61 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/28. Solution Average Pooling.html 8.6 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/14. Transformations and Associations.html 8.59 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/26. Solution Pooling Practice.html 8.59 KB
    Part 01-Module 04-Lesson 08_Object Detection/39. Summary.html 8.58 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/10. Data Preprocessing .html 8.58 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/06. Combining Thresholds.html 8.56 KB
    Part 01-Module 04-Lesson 08_Object Detection/04. Object Detection Overview.html 8.55 KB
    Part 01-Module 04-Lesson 08_Object Detection/01. Intro to Vehicle Tracking.html 8.55 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian.html 8.55 KB
    Part 01-Module 04-Lesson 08_Object Detection/11. Color Histogram Features.html 8.55 KB
    Part 03-Module 05-Lesson 05_System Integration Project/11. Waypoint Updater Node (Full).html 8.55 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/02. Vehicle Models.html 8.54 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/06. Solution Global Kinematic Model.html 8.54 KB
    Part 01-Module 01-Lesson 01_Welcome/08. Deadline Policy.html 8.53 KB
    Part 01-Module 04-Lesson 08_Object Detection/02. Arpan and Drew.html 8.53 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/10. Opposite, Adjacent, Hypotenuse.html 8.53 KB
    Part 01-Module 04-Lesson 08_Object Detection/33. Multi-scale Windows.html 8.52 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/21. Structured Trajectory Generation Overview.html 8.52 KB
    Part 01-Module 04-Lesson 08_Object Detection/23. Build a Classifier.html 8.51 KB
    Part 01-Module 04-Lesson 08_Object Detection/21. Combining Features.html 8.51 KB
    Part 01-Module 04-Lesson 08_Object Detection/26. Train a Classifier.html 8.51 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/25. Derivation Details 2.html 8.51 KB
    Part 03-Module 02-Lesson 01_Search/16. A in Action-qXZt-B7iUyw.ru.vtt 8.51 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/04. Properties of Motion Planning Algorithms.html 8.51 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/04. Write the Introduction.html 8.51 KB
    Part 01-Module 04-Lesson 08_Object Detection/17. Gradient Features.html 8.51 KB
    Part 01-Module 04-Lesson 08_Object Detection/38. Tracking Pipeline.html 8.51 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/Project Rubric - Finding Lane Lines on the Road.html 8.5 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/26. Polynomial Trajectory Generation.html 8.5 KB
    Part 01-Module 04-Lesson 08_Object Detection/36. False Positives.html 8.5 KB
    Part 01-Module 04-Lesson 08_Object Detection/30. Sliding Windows.html 8.5 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/12. Data Augmentation .html 8.5 KB
    Part 01-Module 04-Lesson 08_Object Detection/08. Color Features.html 8.49 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/06. Data Collection Strategies.html 8.48 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/22. Trajectories with Boundary Conditions.html 8.48 KB
    Part 01-Module 04-Lesson 08_Object Detection/14. Color Spaces.html 8.48 KB
    Part 01-Module 04-Lesson 08_Object Detection/24. Labeled Data.html 8.48 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/05. Types of Motion Planning Algorithms.html 8.46 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/08. Transposed Convolution Quiz.html 8.46 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/06. Nodes and Topics.html 8.46 KB
    Part 01-Module 04-Lesson 08_Object Detection/06. Features.html 8.46 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/15. Converting Landmark Observations.html 8.45 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/09. 08 L StatesForASelfDrivingCarSolution-QXU6ptbxfyo.en.vtt 8.44 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/10. Hybrid A Tradeoffs Solution.html 8.44 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/05. Development Interface Agreement.html 8.44 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/03. The Motion Planning Problem.html 8.43 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/23. Jerk Minimizing Trajectories.html 8.43 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/16. Environment Classification.html 8.42 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/30. Implementing Feasibility.html 8.42 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/03. Gaussian Intro.html 8.42 KB
    Part 03-Module 05-Lesson 05_System Integration Project/16. Share Your Success - Capstone.html 8.41 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/18. 14 L CostFunctionDesignWeightTweaking-NK6SP-r4dGs.zh-CN.vtt 8.41 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/11. Hybrid A in Practice.html 8.4 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/31. Putting it All Together.html 8.4 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/10. ROS Subscribers.html 8.4 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/05. Perception Subsystem Components.html 8.39 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/08. Calculate Prediction Step Quiz.html 8.39 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/11. What Problem Does the UKF Solve.html 8.38 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/19. Turtlesim Comms Message Information.html 8.38 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/17. Share your success - EKF.html 8.38 KB
    Part 03-Module 04-Lesson 01_Elective Functional Safety/02. Functional Safety Preview.html 8.38 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/13. Canny Edges.html 8.37 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/07. AlexNet.html 8.37 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/02. Lesson Overview.html 8.36 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/18. The Need for Time.html 8.36 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/17. Frenet Reminder.html 8.36 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/04. Working at Uber ATG-V23NZzX0efY.en.vtt 8.36 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/20. Error Functions-jfKShxGAbok.zh-CN.vtt 8.35 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/25. Measurement Prediction.html 8.35 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/04. Python Lists.html 8.35 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/09. Lab ImageNet Inference.html 8.34 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program - Artificial Intelligence for Robotics-TPIFP4E7DVo.zh-CN.vtt 8.34 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/19. s, d, and t.html 8.34 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/34. Conclusion.html 8.33 KB
    Part 06-Module 01-Lesson 06_Graphs/05. Graph Practice.html 8.33 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories.html 8.31 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/08. Fault Tolerant Time Interval.html 8.31 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/10. Data Association Nearest Neighbor.html 8.31 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/04. Recursion-_aI2Jch6Epk.zh-CN.vtt 8.31 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/img/port-forward.png 8.3 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/33. Story Time.html 8.3 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/03. GPU vs. CPU.html 8.29 KB
    Part 03-Module 02-Lesson 02_Prediction/04. Which is Best.html 8.29 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters.html 8.29 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/28. UKF Update.html 8.28 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/07. Load Factor.html 8.28 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-ade97UKqSIc.es-ES.vtt 8.28 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/Project Description - Optimize Your GitHub Profile.html 8.27 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/24. Derivation Overview.html 8.26 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/34. Outro.html 8.25 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-bQA2ELDNmmg.ru.vtt 8.25 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/08. Training the Network .html 8.24 KB
    Part 02-Module 04-Lesson 01_PID Control/15. Parameter Optimization Solution.html 8.24 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/19. Sigma Point Prediction.html 8.23 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/11. Next Steps.html 8.23 KB
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1.html 8.22 KB
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2.html 8.21 KB
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1.html 8.21 KB
    Part 03-Module 03-Lesson 01_Elective Advanced Deep Learning/02. Advanced Deep Learning Preview.html 8.18 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/12. Update Step.html 8.17 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/07. Dive Deeper into Packages.html 8.17 KB
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2.html 8.17 KB
    assets/css/fonts/KaTeX_Size3-Regular.ttf 8.16 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/31. Parameters And Consistency-S4fX3X_9oik.zh-CN.vtt 8.16 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/08. Other Sources of Software Safety Requirements.html 8.15 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/14. Lab Training the Feature Extractor.html 8.14 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/13. Generating Sigma Points.html 8.12 KB
    Part 01-Module 01-Lesson 01_Welcome/07. Community Code of Conduct.html 8.12 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/02. Bryan Catanzaro.html 8.11 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/12. Object Detection Lab.html 8.11 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/16. UKF Augmentation.html 8.1 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/26. Lab Feature Extraction with Traffic Signs.html 8.1 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/07. Data Visualization .html 8.09 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/05. Bonus Challenge.html 8.09 KB
    Part 02-Module 04-Lesson 01_PID Control/12. PID Implementation Solution.html 8.07 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/21. Explanation of Project Code-3VRp4chnPE4.en.vtt 8.06 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/03. Binary Search Practice.html 8.06 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/measureupdatequizpost.png 8.06 KB
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3.html 8.05 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/16. Mapping with a Nonlinear Function.html 8.03 KB
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2.html 8.03 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/31.png 8.02 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/08. Projects.html 8.01 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/05. Length and Duration.html 8 KB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value.html 8 KB
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2.html 7.99 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/27. Lab Solution - Feature Extraction with Traffic Signs.html 7.99 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/Project Rubric - Model Predictive Control.html 7.98 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/14. System Architecture Safety Design Patterns.html 7.97 KB
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost.html 7.97 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path.html 7.97 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif 7.96 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/02. Tracking Intro.html 7.96 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/04. Initialization.html 7.96 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/01. Introduction.html 7.96 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/13. Look Away Launch and Interact.html 7.95 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/05. Roslaunch.html 7.95 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/04. Tips.html 7.94 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-ade97UKqSIc.en.vtt 7.93 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/02. Intro.html 7.93 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/08. Services.html 7.91 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/18. Regularization Quiz.html 7.9 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/Project Rubric - PID Controller.html 7.9 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/04. Add a Package.html 7.89 KB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2.html 7.89 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/08. Who Cares About 53.13 Degrees.html 7.89 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/Project Description - Craft Your Cover Letter.html 7.88 KB
    Part 03-Module 02-Lesson 01_Search/09. Maze.html 7.86 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/17. Turtlesim Comms List Topics.html 7.85 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/15. Recap.html 7.84 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/04. Highway Map.html 7.84 KB
    Part 03-Module 03-Lesson 04_Inference Performance/14. AOT JIT.html 7.83 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/07. Message Passing.html 7.83 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/23. More Kalman Filters.html 7.83 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/06. ImageNet.html 7.82 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/05. Top Section.html 7.82 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/10. What is Computer Vision.html 7.81 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-xP9PrSTJPz0.en.vtt 7.81 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81 KB
    Part 02-Module 04-Lesson 01_PID Control/08. PD Controller Solution.html 7.8 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/04. Lesson Variables and Equations.html 7.8 KB
    Part 03-Module 04-Lesson 01_Elective Functional Safety/img/elektrobit.png 7.79 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/22. Quiz 2 TensorFlow Dropout.html 7.78 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/Project Description - Functional Safety of a Lane Assistance System.html 7.77 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/53.png 7.77 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/18. Turtlesim Comms Get Topic Info.html 7.76 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/11. Sebastian On Requirements and Testing.html 7.76 KB
    Part 01-Module 03-Lesson 02_MiniFlow/02. Introduction.html 7.76 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/07. Resume Review (Prior Industry Experience).html 7.76 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/03. The Sensor Subsystem.html 7.75 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/09. Bubble Sort Practice.html 7.74 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/05. Data Collection Tactics .html 7.74 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/11. 10 L Hybrid A- In Practice-Mkz_WjyRzag.en.vtt 7.74 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/07. Quick Fixes #2.html 7.74 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/12. Merge Sort Practice.html 7.73 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/08. Measurement and Motion.html 7.71 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/03. Tailoring the Safety Lifecycle.html 7.71 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/07. 2-Layer Neural Network.html 7.71 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/09. 08 L StatesForASelfDrivingCarSolution-QXU6ptbxfyo.zh-CN.vtt 7.7 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses.html 7.7 KB
    Part 01-Module 01-Lesson 01_Welcome/13. Self-Driving Car Quiz.html 7.69 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/07. Resume Review (Career Change).html 7.68 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/Project Description - Extended Kalman Filters.html 7.67 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/21. Project Behavioral Cloning.html 7.67 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/01. Kalman Filters in C++.html 7.66 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/12. Queue Practice.html 7.65 KB
    Part 01-Module 01-Lesson 01_Welcome/10. Rating Your Career Confidence.html 7.64 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/10. Project Extended Kalman Filter GPU.html 7.64 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/16. Transform a Stop Sign.html 7.64 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/03. Additional Workspace Tips.html 7.63 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/07. Resume Review (Entry-level).html 7.62 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/07. Summary.html 7.62 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/05. Deep Learning History.html 7.61 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/02. Introduction to the Lesson.html 7.61 KB
    Part 03-Module 02-Lesson 02_Prediction/15. Naive Bayes Quiz.html 7.6 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/08. Image Formation.html 7.59 KB
    Part 03-Module 06-Lesson 01_Completing the Program/02. Ready to graduate.html 7.59 KB
    Part 03-Module 03-Lesson 04_Inference Performance/12. 8-bit Calculations.html 7.59 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/03. Particle Filter Project Visualizer.html 7.59 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/24. Kalman Filter Design.html 7.59 KB
    Part 03-Module 02-Lesson 02_Prediction/img/frenet-6.png 7.58 KB
    Part 06-Module 01-Lesson 05_Trees/04. Tree Practice.html 7.58 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/17. AlexNet Today.html 7.57 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/01. Introduction.html 7.56 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/20. Turtlesim Comms Echo a Topic.html 7.56 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/26. Conclusion.html 7.55 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/09. Calculate Prediction Step Quiz Explanation.html 7.55 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-xP9PrSTJPz0.ja.vtt 7.54 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/20. GoogLeNet.html 7.54 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/04. Working at Uber ATG-V23NZzX0efY.zh-CN.vtt 7.54 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/15. Curvature and Perspective.html 7.54 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/19. Empirics.html 7.54 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/08. Run Some Code!.html 7.53 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/21. ResNet.html 7.52 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/11. Reflect on your commit messages.html 7.52 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/29. Outro.html 7.52 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/01. Where To.html 7.52 KB
    Part 03-Module 02-Lesson 01_Search/03. About this Lesson.html 7.51 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/18. VGG.html 7.51 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/02. Functional Safety Analysis.html 7.51 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-rH5DKpwYQLY.ru.vtt 7.5 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/05. Sensor Fusion.html 7.49 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/15. Implement a Cost Function in C++ (solution).html 7.49 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/07. Prediction Step.html 7.49 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/10. Freedom from Interference - Temporal.html 7.48 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/17. Implement a Second Cost Function in C++ (solution).html 7.48 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car.html 7.47 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/01. Vehicle Simulator.html 7.45 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/11. 10 L Hybrid A- In Practice-Mkz_WjyRzag.zh-CN.vtt 7.44 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/Project Rubric - Semantic Segmentation.html 7.43 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/09. HLS intuitions.html 7.43 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/16. Lab Conclusion.html 7.42 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/01. Project Introduction.html 7.42 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/17. Intuitions.html 7.42 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components.html 7.42 KB
    Part 02-Module 04-Lesson 01_PID Control/05. P Controller Solution.html 7.41 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program Solution - Artificial Intelligence for Robotics-cl8Kdkr4Gbg.ja.vtt 7.41 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature.html 7.4 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/22. Sensor Fusion General Flow.html 7.4 KB
    Part 02-Module 03-Lesson 03_Markov Localization/index.html 7.38 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/11. Lesson Summary.html 7.38 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/07. Share your success - Traffic Sign.html 7.37 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/11. Summary.html 7.36 KB
    Part 03-Module 03-Lesson 04_Inference Performance/08. Optimizing For Inference.html 7.35 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/18. Cost Function Design and Weight Tweaking.html 7.34 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/12. Create a Cost Function - Speed Penalty.html 7.33 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/13. Lane Curvature.html 7.33 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/06. Share Your Success - Vehicle Detection.html 7.33 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/12. Summary.html 7.33 KB
    Part 02-Module 04-Lesson 01_PID Control/03. Proportional Control.html 7.32 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.ru.vtt 7.32 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/12. Sebastian Talks About Self-Driving Car Risks.html 7.31 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/06. Share your success - Advanced Lane Finding.html 7.31 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/09. The States We'll Use.html 7.31 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/21. Explanation of Project Code.html 7.31 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/15. Dynamic Models - Tire Models.html 7.3 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie.html 7.3 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/codecogseqn-18.gif 7.3 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn.html 7.28 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM.html 7.28 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs.html 7.28 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses.html 7.28 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/07. Coding-zhQYREUI8Z0.pt-BR.vtt 7.27 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick.html 7.27 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/06. Formalizing Finite State Machines.html 7.27 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/03. Color Selection.html 7.27 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/20. Scheduling Compute Time.html 7.27 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/06. Effects of Distortion.html 7.26 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/02. Setting up the Problem.html 7.26 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/05. Finite State Machines.html 7.26 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/12. Participating in open source projects.html 7.26 KB
    Part 02-Module 03-Lesson 05_Particle Filters/01. Field Trip.html 7.26 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/04. The Behavior Problem.html 7.26 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/20. Kalman Filter Land.html 7.25 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example.html 7.25 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes.html 7.25 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/01. Intro to Classifiers.html 7.24 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/02. Safety Culture.html 7.24 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes.html 7.24 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/25. Outro.html 7.23 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python.html 7.23 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/02. Lesson Outline.html 7.22 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/22. SVM Gamma Parameter.html 7.21 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car-lL16AQItG1g.ar.vtt 7.21 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn.html 7.21 KB
    Part 03-Module 03-Lesson 04_Inference Performance/13. Compilation.html 7.2 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/05. Comparison with a Deep Neural Network.html 7.2 KB
    Part 02-Module 04-Lesson 01_PID Control/02. PID Control.html 7.2 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/21. Explanation of Project Code-3VRp4chnPE4.zh-CN.vtt 7.2 KB
    Part 02-Module 01-Lesson 01_Welcome/05. Deadline Policy.html 7.2 KB
    Part 03-Module 01-Lesson 01_Welcome/05. Deadline Policy.html 7.19 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/01. Particle Filters in C++.html 7.19 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/23. Conclusion.html 7.19 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/07. Share Your Success - Path Planning.html 7.19 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/02. Intro to Behavioral Cloning Project.html 7.19 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/10. Time for Live Practice with Pramp.html 7.19 KB
    Part 02-Module 04-Lesson 01_PID Control/06. Oscillations.html 7.19 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data.html 7.18 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/02. GitHub profile important items.html 7.18 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/01. Introduction.html 7.17 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/12. ROS Workspace.html 7.17 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/15. Even More Powerful Network.html 7.17 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/08. Writing READMEs with Walter.html 7.16 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/01. Intro.html 7.16 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/11. ROS Workspace Instructions.html 7.15 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/20. Coming Up.html 7.14 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/06. Share Your Success - UKF.html 7.13 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/Project Description - Behavioral Cloning.html 7.13 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/11. Chessboards-lA-I22LtvD4.en.vtt 7.13 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/02. Deriving Technical Safety Requirements.html 7.12 KB
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough.html 7.12 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro.html 7.12 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/11. More Networks.html 7.11 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/03. Lesson Introduction.html 7.11 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.ar.vtt 7.1 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/16. Transforming a Stop Sign-OXILkkXXY8A.en.vtt 7.1 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/06. Rosdep.html 7.1 KB
    Part 03-Module 05-Lesson 05_System Integration Project/15. Capstone Project Workspace.html 7.08 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/14. Perspective Transform.html 7.07 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/01. Let's Go Deeper.html 7.07 KB
    Part 02-Module 04-Lesson 01_PID Control/09. Systematic Bias.html 7.07 KB
    Part 03-Module 03-Lesson 04_Inference Performance/06. Graph Transforms.html 7.07 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-ade97UKqSIc.ja.vtt 7.06 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/01. Communication Between Systems.html 7.06 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/10. Verification and Validation Acceptance Criteria.html 7.06 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/05. Your Udacity Professional Profile.html 7.05 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/05. Share Your Success.html 7.05 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/08. Resources in Your Career Portal.html 7.05 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/03. GPU Options for the Project.html 7.04 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/03. Challenge 1.html 7.04 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/02. [Optional] Beta Test our Upcoming C++ Course.html 7.04 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion.html 7.04 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/02. Overview.html 7.03 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons.html 7.03 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-ade97UKqSIc.zh-CN.vtt 7.02 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/04. Plotting Robot Motion (right angles only).html 7.02 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/14. Participating in open source projects 2.html 7.01 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/16. Keeping Track of x and y (solution).html 7.01 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/04. Share Your Success - Kidnapped Vehicle.html 7.01 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/02. Reference State.html 7 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/05. Plotting Robot Motion Solution .html 7 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/11. Nearest Neighbor Advantages and Disadvantages.html 6.99 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/12. Looking up Sin, Cos, and Tan.html 6.99 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/05. Share Your Success.html 6.99 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/15. Lesson Summary.html 6.99 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/04. Maximizing the Margin.html 6.99 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/01. Back to Bayes Theorem.html 6.99 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/15. Keeping Track of x and y.html 6.99 KB
    Part 03-Module 02-Lesson 02_Prediction/01. Introduction and Overview.html 6.98 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/04. Build Robots with ROS.html 6.98 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/08. Resources in Your Career Portal.html 6.97 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/07. Latency.html 6.96 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/08. Resources in Your Career Portal.html 6.95 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/13. Training a Deep Learning Network.html 6.95 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/16. Outro.html 6.95 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/05. Distortion Correction.html 6.95 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/03. Share Your Success - Functional Safety.html 6.94 KB
    Part 03-Module 03-Lesson 04_Inference Performance/15. Reusing The Graph.html 6.94 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/02. Intro to Deep Neural Networks.html 6.93 KB
    Part 02-Module 03-Lesson 05_Particle Filters/08. Robot Class Details.html 6.92 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/index.html 6.92 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/13. Interview with Art - Part 3.html 6.92 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/04. Interview with Art - Part 1.html 6.92 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/09. Interview with Art - Part 2.html 6.92 KB
    Part 03-Module 02-Lesson 02_Prediction/06. Trajectory Clustering 2 - Online Prediction.html 6.91 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/10. FCN-8 - Decoder.html 6.91 KB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion.html 6.91 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/Project Rubric - Kidnapped Vehicle.html 6.91 KB
    Part 02-Module 03-Lesson 05_Particle Filters/07. Using Robot Class.html 6.91 KB
    Part 02-Module 03-Lesson 05_Particle Filters/24. You and Sebastian.html 6.91 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/04. Linear Models are Limited.html 6.9 KB
    Part 02-Module 03-Lesson 05_Particle Filters/06. Particle Filters.html 6.9 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program Solution - Artificial Intelligence for Robotics-cl8Kdkr4Gbg.en.vtt 6.89 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/08. Resources in Your Career Portal.html 6.88 KB
    Part 03-Module 02-Lesson 01_Search/01. Motion Planning.html 6.88 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/03. Good GitHub repository.html 6.88 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/09. The Power of Trigonometry.html 6.87 KB
    Part 02-Module 03-Lesson 05_Particle Filters/11. Robot World.html 6.87 KB
    Part 03-Module 05-Lesson 05_System Integration Project/01. Have Fun!.html 6.86 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/01. The Challenges with Cameras.html 6.86 KB
    Part 03-Module 05-Lesson 05_System Integration Project/08. DBW Walkthrough.html 6.86 KB
    Part 06-Module 01-Lesson 05_Trees/07. Tree Traversal Practice.html 6.86 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/03. Stanley Terrain Classification.html 6.85 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.en-US.vtt 6.84 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.en.vtt 6.84 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/20. Dropout Pt. 2.html 6.83 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/17. Regularization.html 6.83 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/02. Introduction.html 6.83 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/03. Share Your Success - PID.html 6.82 KB
    Part 02-Module 03-Lesson 05_Particle Filters/26. 2012.html 6.82 KB
    assets/css/fonts/KaTeX_Size1-Regular.woff 6.82 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/06. Recruitment Data.html 6.81 KB
    Part 01-Module 03-Lesson 02_MiniFlow/18. Outro.html 6.81 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/10. The Chain Rule.html 6.8 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/07. Coding-zhQYREUI8Z0.zh-CN.vtt 6.8 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/11. Backprop.html 6.8 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/15. Quick Sort Practice.html 6.8 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/06. Quick Fixes #1.html 6.8 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/19. Dropout.html 6.79 KB
    Part 01-Module 03-Lesson 08_Keras/07. Convolutions in Keras.html 6.79 KB
    Part 03-Module 02-Lesson 01_Search/17. Dynamic Programming.html 6.79 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/09. Finding Lines of Any Color.html 6.78 KB
    Part 01-Module 01-Lesson 02_Workspaces/02. Using Workspaces.html 6.78 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/11. Freedom from Interference - Temporal Part 2.html 6.77 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/16. Transforming a Stop Sign-OXILkkXXY8A.zh-CN.vtt 6.76 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76 KB
    Part 03-Module 02-Lesson 01_Search/04. Motion Planning.html 6.76 KB
    Part 03-Module 03-Lesson 04_Inference Performance/10. Quantization Quiz.html 6.75 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/02. Course Outline.html 6.75 KB
    Part 01-Module 01-Lesson 01_Welcome/11. Self-Driving Car History.html 6.74 KB
    Part 03-Module 05-Lesson 05_System Integration Project/Project Rubric - Programming a Real Self-Driving Car.html 6.74 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/index.html 6.74 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/Project Description - Udacity Professional Profile Review.html 6.74 KB
    Part 03-Module 02-Lesson 01_Search/16. A in Action.html 6.73 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/06. Network of ReLUs.html 6.72 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/12. Sebastian and Temporal Interference.html 6.72 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/03. Personal Branding.html 6.71 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-xP9PrSTJPz0.zh-CN.vtt 6.71 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/2.png 6.7 KB
    Part 02-Module 03-Lesson 04_Motion Models/05. Note on Frames of Reference.html 6.7 KB
    Part 02-Module 04-Lesson 01_PID Control/13. Twiddle - Artificial Intelligence for Robotics-2uQ2BSzDvXs.ru.vtt 6.7 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/02. Project QA.html 6.7 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/03. Welcome to ROS Essentials.html 6.69 KB
    Part 03-Module 02-Lesson 02_Prediction/05. Data Driven Example - Trajectory Clustering.html 6.68 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/02. Project Introduction.html 6.68 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/02. File Structure.html 6.67 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/05. Brief History of ROS.html 6.66 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66 KB
    Part 01-Module 04-Lesson 07_Decision Trees/index.html 6.66 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/Project Description - Resume Review Project (Entry-level).html 6.66 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/11. Chessboards-lA-I22LtvD4.zh-CN.vtt 6.66 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/02. Introduction.html 6.65 KB
    Part 03-Module 02-Lesson 01_Search/14. A.html 6.65 KB
    Part 03-Module 02-Lesson 02_Prediction/18. Conclusion.html 6.65 KB
    Part 03-Module 02-Lesson 02_Prediction/07. Thinking about Model Based Approaches.html 6.64 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/17. Conclusion.html 6.64 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/05. Architecture Refinement.html 6.64 KB
    Part 01-Module 03-Lesson 08_Keras/10. Testing in Keras.html 6.63 KB
    Part 03-Module 02-Lesson 02_Prediction/03. Model-Based vs Data-Driven Approaches.html 6.63 KB
    Part 01-Module 03-Lesson 08_Keras/09. Dropout in Keras.html 6.63 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/09. Compute Graph.html 6.62 KB
    Part 02-Module 03-Lesson 04_Motion Models/08. Odometry Errors Quiz.html 6.62 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/05. Live Data Walkthrough.html 6.62 KB
    Part 06-Module 01-Lesson 05_Trees/19. Red-Black Trees - Insertion.html 6.62 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/01. Introduction to the Functional Safety Module.html 6.62 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/index.html 6.62 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/diagonal-line-2.png 6.62 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/Project Description - Resume Review Project (Prior Industry Experience).html 6.61 KB
    Part 03-Module 02-Lesson 02_Prediction/13. Overview of Hybrid Approaches.html 6.61 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/07. Format.html 6.6 KB
    Part 03-Module 02-Lesson 02_Prediction/11. Multimodal Estimation.html 6.6 KB
    Part 06-Module 01-Lesson 05_Trees/06. Depth-First Traversals.html 6.58 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/21. Recap.html 6.58 KB
    Part 03-Module 05-Lesson 05_System Integration Project/02. Introduction.html 6.57 KB
    Part 03-Module 02-Lesson 01_Search/02. Introduction to Path Planning.html 6.57 KB
    Part 06-Module 01-Lesson 05_Trees/18. Self-Balancing Trees.html 6.56 KB
    Part 03-Module 02-Lesson 01_Search/17. Dynamic Programming-r2bPY2s9wII.ru.vtt 6.56 KB
    Part 06-Module 01-Lesson 05_Trees/10. Binary Search Trees.html 6.55 KB
    Part 06-Module 01-Lesson 05_Trees/17. Heap Implementation.html 6.55 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/16. Module Summary.html 6.55 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch.html 6.54 KB
    Part 03-Module 02-Lesson 02_Prediction/14. Intro to Naive Bayes.html 6.54 KB
    Part 06-Module 01-Lesson 05_Trees/08. Search and Delete.html 6.54 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/13. Dynamic Models - Slip Angle.html 6.54 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/04. Getting Started.html 6.54 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/02. Welcome to Computer Vision.html 6.53 KB
    Part 06-Module 01-Lesson 05_Trees/03. Tree Terminology.html 6.53 KB
    Part 03-Module 02-Lesson 02_Prediction/01. 01 L Introduction And Overview-aHmVFZ6hMjc.en.vtt 6.53 KB
    assets/css/fonts/KaTeX_Size2-Regular.woff 6.53 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/13. Trigonometry and Vehicle Motion.html 6.52 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/01. Introduction.html 6.52 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/03. Working at NVIDIA-C6Rt9lxMqHs.en.vtt 6.52 KB
    Part 06-Module 01-Lesson 05_Trees/20. Tree Rotations.html 6.52 KB
    Part 06-Module 01-Lesson 05_Trees/05. Tree Traversal.html 6.52 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review.html 6.51 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/09. Transposed Convolution Quiz Solution.html 6.51 KB
    Part 03-Module 05-Lesson 05_System Integration Project/06. Waypoint Updater Partial Walkthrough.html 6.51 KB
    Part 02-Module 03-Lesson 04_Motion Models/06. Roll, Pitch and Yaw Quiz.html 6.51 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/Project Description - Resume Review Project (Career Change).html 6.5 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.5 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/02. Udacity Talent Source.html 6.5 KB
    Part 06-Module 01-Lesson 05_Trees/02. Tree Basics.html 6.49 KB
    Part 01-Module 03-Lesson 08_Keras/05. Keras Overview.html 6.49 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/14. Solving Trig Problems.html 6.49 KB
    Part 01-Module 03-Lesson 08_Keras/08. Pooling in Keras.html 6.49 KB
    Part 01-Module 04-Lesson 08_Object Detection/index.html 6.48 KB
    Part 03-Module 05-Lesson 05_System Integration Project/10. Detection Walkthrough.html 6.48 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/index.html 6.48 KB
    Part 03-Module 05-Lesson 05_System Integration Project/12. Full Waypoint Walkthrough.html 6.48 KB
    Part 06-Module 01-Lesson 05_Trees/16. Heapify.html 6.46 KB
    Part 06-Module 01-Lesson 05_Trees/09. Insert.html 6.45 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/index.html 6.45 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/09. Measuring Distortion.html 6.45 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/09. FCN-8 - Encoder.html 6.45 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/01. Power of Cameras.html 6.45 KB
    Part 06-Module 01-Lesson 05_Trees/15. Heaps.html 6.45 KB
    Part 06-Module 01-Lesson 05_Trees/01. Trees.html 6.45 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-CyQ2gl-9W4o.ru.vtt 6.44 KB
    Part 06-Module 01-Lesson 05_Trees/12. BSTs.html 6.44 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review.html 6.43 KB
    Part 03-Module 06-Lesson 01_Completing the Program/03. Rating Your Career Confidence.html 6.42 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/03. Getting Started.html 6.42 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review.html 6.42 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/03. Overview.html 6.42 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/04. MPC Workspace.html 6.42 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/06. Get Started.html 6.4 KB
    Part 03-Module 02-Lesson 01_Search/11. First Search Program Solution - Artificial Intelligence for Robotics-cl8Kdkr4Gbg.zh-CN.vtt 6.4 KB
    Part 03-Module 02-Lesson 02_Prediction/09. Process Models.html 6.4 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39 KB
    Part 01-Module 01-Lesson 02_Workspaces/05. Terminals.html 6.39 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/01. Introduction.html 6.38 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/img/lesson4-step8-timestamp.png 6.38 KB
    Part 03-Module 06-Lesson 01_Completing the Program/04. What's next.html 6.38 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.pt-BR.vtt 6.38 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/04. Lidar Strengths and Weaknesses.html 6.37 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.ja.vtt 6.37 KB
    Part 02-Module 04-Lesson 01_PID Control/13. Twiddle.html 6.37 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/02. Two Dimensional Robot Motion and Trigonometry.html 6.35 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/31. 31 L PuttingItAllTogether-UhrmXmnKhQE.en.vtt 6.34 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences.html 6.34 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!.html 6.33 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/01. Meet the Careers Team.html 6.33 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/02. Project Introduction.html 6.32 KB
    Part 02-Module 04-Lesson 01_PID Control/01. Intro.html 6.32 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.ar.vtt 6.32 KB
    Part 06-Module 01-Lesson 05_Trees/13. BST Complications.html 6.31 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/05. Resources in Your Career Portal.html 6.31 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/01. About this Lesson.html 6.31 KB
    assets/css/fonts/KaTeX_Size4-Regular.woff 6.3 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/06. Sebastian and Technology Errors.html 6.3 KB
    Part 03-Module 03-Lesson 04_Inference Performance/09. Reducing Precision.html 6.29 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/02. Overview of Catkin Workspaces and Packages.html 6.29 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/06. IOU Example.html 6.28 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation.html 6.28 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/08. Recap.html 6.27 KB
    Part 01-Module 01-Lesson 01_Welcome/09. Class Schedule .html 6.26 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/14. Dynamic Models - Slip Ratio.html 6.26 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/02. Efficiency of Binary Search.html 6.26 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences.html 6.26 KB
    Part 01-Module 03-Lesson 02_MiniFlow/01. Introduction to MiniFlow.html 6.25 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort.html 6.25 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences.html 6.24 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort.html 6.24 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/01. Closing In.html 6.24 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/12. Dynamic Models - Forces.html 6.24 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort.html 6.24 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/Project Description - Unscented Kalman Filters.html 6.24 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.it.vtt 6.24 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.es-ES.vtt 6.23 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/11. FCN-8 - Classification Loss.html 6.23 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.es.vtt 6.23 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/08. IOU Solution.html 6.23 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.pt-PT.vtt 6.23 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.pt.vtt 6.23 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/03. Localization Intuition Quiz.html 6.22 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/16. Actuator Constraints.html 6.21 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car-lL16AQItG1g.ja.vtt 6.21 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/07. Following Trajectories.html 6.21 KB
    Part 01-Module 01-Lesson 01_Welcome/01. Why Self-Driving Cars.html 6.21 KB
    Part 05-Module 01-Lesson 02_LinkedIn Review/Project Description - LinkedIn Profile Review Project.html 6.2 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/07. Skills.html 6.2 KB
    Part 01-Module 01-Lesson 01_Welcome/03. Overview of ND Program.html 6.19 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-LEuzK9X7_hM.es-ES.vtt 6.18 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/06. Intro to Sorting.html 6.18 KB
    Part 02-Module 03-Lesson 02_Localization Overview/index.html 6.17 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/08. Notation Intro.html 6.17 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/17. Outro.html 6.17 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/Project Description - Model Predictive Control.html 6.16 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/01. Binary Search.html 6.15 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/05. Finding Lane Lines.html 6.15 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-X7cixvcogl8.es-ES.vtt 6.15 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/04. Challenge 1 Solution.html 6.15 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/07. Starter Kit Installation.html 6.15 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-FdT1g_Bzjm0.ru.vtt 6.14 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.en.vtt 6.14 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/01. High Performance Computing.html 6.14 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/07. Bubble Sort.html 6.14 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/13. Quick Sort.html 6.13 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/10. Merge Sort.html 6.13 KB
    Part 03-Module 03-Lesson 04_Inference Performance/03. Semantic Segmentation Revisited.html 6.12 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/04. Recursion.html 6.12 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/04. Introduction to Hazard Analysis and Risk Assessment.html 6.12 KB
    Part 01-Module 01-Lesson 01_Welcome/12. The Great Robot Race (Optional).html 6.11 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/03. State.html 6.11 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely.html 6.1 KB
    Part 01-Module 01-Lesson 02_Workspaces/06. Resetting Data.html 6.1 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/06. Traffic Sign Classifier.html 6.09 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components.html 6.09 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/Project Description - Traffic Sign Classifier.html 6.09 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/26. 21 L Measuring Performance-byP0DJImOSk.pt-BR.vtt 6.08 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/05. Sebastian Discussing Hazards.html 6.08 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/perceptron-equation-2.gif 6.08 KB
    Part 03-Module 03-Lesson 04_Inference Performance/02. Why Bother With Performance.html 6.07 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/04. Vehicle Detection Workspace.html 6.07 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.iw.vtt 6.06 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/08. L3 Arm Mover The Code-0Li845bwxyM.en.vtt 6.05 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/02. Intro to Traffic Sign Classifier.html 6.05 KB
    Part 03-Module 03-Lesson 04_Inference Performance/11. Quantization Conversion.html 6.05 KB
    Part 03-Module 02-Lesson 02_Prediction/01. 01 L Introduction And Overview-aHmVFZ6hMjc.zh-CN.vtt 6.04 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/12. Update Step-1Uq2QZKz3aI.en.vtt 6.03 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely.html 6.02 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection.html 6.01 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components.html 6.01 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure.html 6.01 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely.html 6 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/05. Project Advanced Lane Finding.html 6 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/32. What to Expect from the Project-WAt_g6HgYvs.en.vtt 6 KB
    Part 02-Module 01-Lesson 01_Welcome/03. First Two Weeks Learning Plan.html 6 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components.html 6 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/06. 1x1 Convolution Quiz Solution.html 6 KB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-SSyvcCZKlqo.ja.vtt 5.99 KB
    Part 03-Module 01-Lesson 01_Welcome/03. First Two Weeks Learning Plan.html 5.99 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/01. Building a Portfolio.html 5.98 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/09. Interview Wrap-Up.html 5.98 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/07. Summary.html 5.97 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/Project Description - Kidnapped Vehicle.html 5.97 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/04. Additional Cost Considerations.html 5.96 KB
    Part 01-Module 01-Lesson 02_Workspaces/04. Submitting Projects.html 5.96 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/01. Starting with Neural Networks.html 5.96 KB
    Part 03-Module 02-Lesson 02_Prediction/09. 09 L ProcessModels-VcRDsKBn7tc.en.vtt 5.96 KB
    Part 06-Module 01-Lesson 06_Graphs/06. Graph Representations.html 5.96 KB
    Part 06-Module 01-Lesson 06_Graphs/03. Directions and Cycles.html 5.96 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/31. 31 L PuttingItAllTogether-UhrmXmnKhQE.zh-CN.vtt 5.95 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/10. Challenge 4 Solution.html 5.95 KB
    Part 03-Module 03-Lesson 04_Inference Performance/07. Fusion.html 5.95 KB
    Part 03-Module 03-Lesson 04_Inference Performance/01. Intro.html 5.94 KB
    Part 03-Module 03-Lesson 04_Inference Performance/16. Outro.html 5.94 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.zh-CN.vtt 5.94 KB
    Part 06-Module 01-Lesson 06_Graphs/07. Adjacency Matrices.html 5.93 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection.html 5.93 KB
    Part 06-Module 01-Lesson 06_Graphs/01. Graph Introduction.html 5.93 KB
    Part 01-Module 03-Lesson 08_Keras/01. Deep Learning Breakthroughs.html 5.93 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/01. Intro.html 5.93 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure.html 5.92 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/02. Why Fully Convolutional Networks (FCNs) .html 5.92 KB
    Part 02-Module 04-Lesson 01_PID Control/16. Outro.html 5.92 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection.html 5.92 KB
    Part 02-Module 03-Lesson 03_Markov Localization/18. Explain Markov Assumption For Motion Model-YFLAFptKU5E.en.vtt 5.92 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.bn.vtt 5.91 KB
    Part 06-Module 01-Lesson 06_Graphs/02. What Is a Graph.html 5.91 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/09. String Keys.html 5.91 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/Project Description - PID Controller.html 5.91 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure.html 5.91 KB
    Part 06-Module 01-Lesson 06_Graphs/09. Graph Traversal.html 5.91 KB
    Part 01-Module 01-Lesson 01_Welcome/04. What Projects Will You Build.html 5.91 KB
    Part 01-Module 01-Lesson 02_Workspaces/03. GPU Workspaces.html 5.9 KB
    Part 06-Module 01-Lesson 06_Graphs/13. Eulerian Path.html 5.89 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/12. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network.html 5.89 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/04. Fully Connected to 1x1 Convolution.html 5.89 KB
    Part 06-Module 01-Lesson 06_Graphs/04. Connectivity.html 5.88 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/16. Outro.html 5.88 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/08. The Control Subsystem.html 5.88 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-LEuzK9X7_hM.en.vtt 5.87 KB
    Part 01-Module 01-Lesson 01_Welcome/02. Meet Your Instructors.html 5.86 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/09. Experience.html 5.86 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/03. Fully Convolutional Networks.html 5.85 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/01. Reviewing Steps.html 5.84 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/08. Challenge 3 Solution.html 5.83 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/index.html 5.83 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/01. Putting it All Together.html 5.83 KB
    Part 02-Module 03-Lesson 04_Motion Models/01. Motion in Autonomy.html 5.83 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/23. 22 Jerk Minimizing Trajectories-pomDFkzy2bk.en.vtt 5.82 KB
    Part 06-Module 01-Lesson 06_Graphs/11. BFS.html 5.81 KB
    Part 06-Module 01-Lesson 06_Graphs/10. DFS.html 5.81 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/02. Clarifying the Question.html 5.81 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/26. 21 L Measuring Performance-byP0DJImOSk.en-US.vtt 5.81 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/01. Welcome to Collections.html 5.81 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose of the Cover Letter.html 5.81 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/04. Workspace Semantic Segmentation.html 5.8 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/01. Becoming an Expert.html 5.8 KB
    Part 01-Module 01-Lesson 02_Workspaces/08. Example Terminal Workspace.html 5.8 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/01. Interview Introduction.html 5.8 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/06. Linked Lists in Depth.html 5.8 KB
    Part 01-Module 01-Lesson 02_Workspaces/07. Example Jupyter Workspace.html 5.8 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/02. Project Intro.html 5.8 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/11. Efficiency of Merge Sort-HKiK5Y-YSkk.zh-CN.vtt 5.79 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/11. FCNs In The Wild.html 5.78 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/10. Skip Connections.html 5.78 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/01. Course Introduction.html 5.78 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/09. Notation Continued.html 5.77 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-X7cixvcogl8.en.vtt 5.76 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/03. Confirming Inputs.html 5.76 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/img/diagonal-line-1.png 5.76 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/01. Planning is Hard.html 5.76 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris.html 5.75 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/06. Runtime Analysis.html 5.75 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/12. Challenge 5 Solution.html 5.75 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/09. Stacks Details.html 5.75 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/03. Working at NVIDIA-C6Rt9lxMqHs.zh-CN.vtt 5.74 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/05. Brainstorming.html 5.73 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/05. Linked Lists.html 5.73 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/03. Course Expectations.html 5.72 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/12. Outro.html 5.72 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/01. Intro.html 5.72 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/08. Hash Maps.html 5.71 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.ja.vtt 5.71 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/07. Efficiency.html 5.71 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/04. Test Cases.html 5.71 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/06. Challenge 2 Solution.html 5.7 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.7 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/08. Debugging.html 5.7 KB
    assets/css/fonts/KaTeX_Size1-Regular.woff2 5.69 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms.html 5.69 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/08. Stacks.html 5.68 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/11. Queues.html 5.68 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/03. Arrays.html 5.68 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/04. Syntax.html 5.68 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/07. Coding.html 5.68 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/02. Lists.html 5.67 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/index.html 5.67 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.en-US.vtt 5.67 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/03. Semantic Segmentation.html 5.67 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.en.vtt 5.67 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/04. Introduction to Hashing.html 5.66 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/04. Scene Understanding.html 5.65 KB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-SSyvcCZKlqo.en.vtt 5.65 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/01. Gradient Threshold.html 5.65 KB
    Part 03-Module 02-Lesson 01_Search/16. A in Action-qXZt-B7iUyw.ja.vtt 5.64 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/01. The Importance of ROS for SDC.html 5.64 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/01. Introduction to Maps.html 5.64 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem.html 5.64 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/06. Sebastian on Testing.html 5.63 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/02. Bounding Boxes.html 5.63 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm.html 5.62 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/07. Color Spaces.html 5.62 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction.html 5.62 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/08. 04 - Training The Network-iYH4UvsPgOY.en.vtt 5.62 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/06. LeNet Evaluation Pipeline.html 5.61 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/inputs-matrix.png 5.61 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/Project Description - Finding Lane Lines on the Road.html 5.61 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/index.html 5.61 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/12. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/10. LeNet for Traffic Signs.html 5.6 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem.html 5.6 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/05. LeNet Training Pipeline.html 5.6 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/07. LeNet Training the Model.html 5.59 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming.html 5.58 KB
    Part 01-Module 03-Lesson 08_Keras/03. Deep Learning Frameworks.html 5.58 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/02. Sets and Maps.html 5.58 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/04. LeNet Implementation.html 5.58 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm.html 5.58 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/01. Intro.html 5.57 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/13. Outro.html 5.57 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/01. LeNet Architecture.html 5.57 KB
    Part 01-Module 03-Lesson 08_Keras/04. High Level Frameworks.html 5.57 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/06. Collisions.html 5.56 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem.html 5.56 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/05. IoU.html 5.56 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter.html 5.56 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/13. Outro and Advice.html 5.55 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/01. Sparse Localization.html 5.55 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/08. LeNet Testing.html 5.54 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/05. Hashing.html 5.54 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/06. Putting It All Together.html 5.54 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/09. LeNet on AWS.html 5.54 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/11. Outro.html 5.53 KB
    Part 02-Module 03-Lesson 04_Motion Models/09. Odometry Errors Solution.html 5.53 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/03. Dealing With Stopping.html 5.53 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/03. LeNet Data.html 5.52 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-X7YggdDnLaw.ru.vtt 5.52 KB
    Part 01-Module 03-Lesson 08_Keras/02. Introduction.html 5.51 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/01. Localization Overview.html 5.5 KB
    Part 01-Module 03-Lesson 08_Keras/11. Conclusion.html 5.5 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Why Use Elevator Pitches.html 5.5 KB
    Part 02-Module 03-Lesson 04_Motion Models/04. Yaw Rate and Velocity.html 5.5 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/06. Project QA.html 5.5 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/Project Description - Vehicle Detection and Tracking.html 5.5 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/23. More Kalman Filters-hUnTg5v4tDU.es-ES.vtt 5.5 KB
    Part 02-Module 03-Lesson 04_Motion Models/02. Lesson Introduction.html 5.5 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/index.html 5.49 KB
    Part 02-Module 03-Lesson 04_Motion Models/03. Motion Models Bicycle Model.html 5.49 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/05. L3 Simple Mover Code-jEO_4xxA_mI.en.vtt 5.49 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/04. The Perception Subsystem.html 5.49 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch.html 5.48 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-bQA2ELDNmmg.ja.vtt 5.48 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/06. The Planning Subsystem.html 5.48 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/02. Introduction.html 5.46 KB
    Part 02-Module 03-Lesson 04_Motion Models/10. Conclusion.html 5.45 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/01. The Benefits of Sensors.html 5.45 KB
    Part 01-Module 01-Lesson 01_Welcome/04. What Projects Will You Build-JGpXenoW0dk.en.vtt 5.45 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/09. On to the code!.html 5.45 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer.html 5.44 KB
    Part 02-Module 03-Lesson 04_Motion Models/07. Odometry.html 5.43 KB
    assets/css/fonts/KaTeX_Size2-Regular.woff2 5.43 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/02. Onward to the Project!.html 5.41 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/Project Description - Advanced Lane Finding.html 5.41 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.en-US.vtt 5.39 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity.html 5.38 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.en.vtt 5.37 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/01. C++ On the Vehicle.html 5.35 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/Project Description - Semantic Segmentation.html 5.35 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/index.html 5.34 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/13. Interview with Art - Part 3-M6PKr3S1rPg.ar.vtt 5.33 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/13. Programming Assignment-gTEQHV_1E2k.en.vtt 5.33 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/08. 04 - Training The Network-iYH4UvsPgOY.zh-CN.vtt 5.33 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/index.html 5.33 KB
    Part 01-Module 01-Lesson 01_Welcome/04. What Projects Will You Build-JGpXenoW0dk.zh-CN.vtt 5.32 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.pt-BR.vtt 5.31 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-X7cixvcogl8.zh-CN.vtt 5.3 KB
    Part 02-Module 01-Lesson 01_Welcome/04. Class Schedule .html 5.3 KB
    Part 03-Module 01-Lesson 01_Welcome/04. Class Schedule.html 5.3 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/08. L3 Arm Mover The Code-0Li845bwxyM.zh-CN.vtt 5.29 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/index.html 5.29 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset.html 5.28 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car-lL16AQItG1g.en.vtt 5.28 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/img/transposed-conv.png 5.28 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/index.html 5.27 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/04. Localization Intuition Explanation.html 5.25 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.ja.vtt 5.25 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/12. Update Step-1Uq2QZKz3aI.zh-CN.vtt 5.24 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/01. Introduction.html 5.23 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.de.vtt 5.23 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/23. 22 Jerk Minimizing Trajectories-pomDFkzy2bk.zh-CN.vtt 5.22 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/10. LeNet for Traffic Signs-VfJvSF087SI.en.vtt 5.22 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/05. Localizing a Self Driving Car.html 5.22 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/01. Introduction.html 5.21 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-LEuzK9X7_hM.zh-CN.vtt 5.21 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car-lL16AQItG1g.pt-BR.vtt 5.21 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/02. Project QA.html 5.21 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.pt-BR.vtt 5.2 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/19. 18 L S D And T-SD1iyzgFf8s.en.vtt 5.2 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/11. Nearest Neighbor Advantages And Disadvantages-snXId_LyzXs.en.vtt 5.2 KB
    Part 03-Module 03-Lesson 01_Elective Advanced Deep Learning/01. Elective Requirements.html 5.2 KB
    Part 02-Module 03-Lesson 03_Markov Localization/18. Explain Markov Assumption For Motion Model-YFLAFptKU5E.zh-CN.vtt 5.2 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.es-MX.vtt 5.2 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-bQA2ELDNmmg.en.vtt 5.19 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/02. Lesson Introduction.html 5.19 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/06. Overview of the Lessons.html 5.19 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/15. ND013 M4 L6 Converting Landmark Observations-BrQfVd4JXpg.en.vtt 5.18 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/26. 21 L Measuring Performance-byP0DJImOSk.zh-CN.vtt 5.18 KB
    Part 03-Module 04-Lesson 01_Elective Functional Safety/01. Elective Requirements.html 5.18 KB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-SSyvcCZKlqo.zh-CN.vtt 5.17 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.pt-BR.vtt 5.17 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/03. Radar Strengths and Weaknesses.html 5.16 KB
    Part 02-Module 03-Lesson 05_Particle Filters/06. Particle Filters-4S-sx5_cmLU.en.vtt 5.15 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/index.html 5.15 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/08. L1 17 Reducing Risk With System Engineering-tFxkJKcujhQ.en.vtt 5.14 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.ar.vtt 5.14 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/25. Kalman Matrices-LEuzK9X7_hM.ja.vtt 5.14 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.ar.vtt 5.13 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-krV6r7HxmZU.ar.vtt 5.13 KB
    Part 03-Module 02-Lesson 01_Search/16. A in Action-qXZt-B7iUyw.zh-CN.vtt 5.13 KB
    Part 03-Module 02-Lesson 01_Search/16. A in Action-qXZt-B7iUyw.en.vtt 5.12 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/index.html 5.12 KB
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/index.html 5.12 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-rH5DKpwYQLY.ja.vtt 5.12 KB
    Part 02-Module 03-Lesson 05_Particle Filters/index.html 5.11 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.es-ES.vtt 5.11 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.ca.vtt 5.1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.es.vtt 5.1 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/02. Working at Mercedes-Benz-Z_hi4djW5aw.en.vtt 5.1 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/23. More Kalman Filters-hUnTg5v4tDU.en.vtt 5.1 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/32. What to Expect from the Project-WAt_g6HgYvs.zh-CN.vtt 5.09 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/index.html 5.09 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/10. LeNet for Traffic Signs-VfJvSF087SI.zh-CN.vtt 5.07 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.en.vtt 5.07 KB
    assets/css/fonts/KaTeX_Size4-Regular.woff2 5.06 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06 KB
    Part 03-Module 05-Lesson 05_System Integration Project/index.html 5.06 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/02. Introduction.html 5.05 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/02. Mercedes-Benz.html 5.05 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/05. Types of Motion Planning Algorithms-6-K1aLTEvk8.en.vtt 5.05 KB
    Part 02-Module 03-Lesson 05_Particle Filters/06. Particle Filters-4S-sx5_cmLU.ja.vtt 5.05 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05 KB
    Part 01-Module 05-Lesson 01_Get Ready for Term 2 C++/01. C++ Resources.html 5.04 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/04. Uber ATG.html 5.03 KB
    Part 03-Module 02-Lesson 02_Prediction/index.html 5.02 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/06. Outro.html 5.02 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/25. Measurement Prediction-qDX8nL_OT60.en.vtt 5.02 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/03. NVIDIA.html 5.01 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/index.html 5.01 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/05. Brainstorming-LJFYhMDCCsU.en-US.vtt 5 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.en-US.vtt 5 KB
    Part 03-Module 02-Lesson 06_Coming Up Electives/01. Elective Requirements.html 5 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/05. Brainstorming-LJFYhMDCCsU.en.vtt 5 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.en.vtt 5 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/26. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/index.html 4.99 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/22. 21 L TrajectoriesWithBoundaryConditions-p73Jma9nW-Q.en.vtt 4.98 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/12. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/10. Merge Sort-K916wfSzKxE.zh-CN.vtt 4.96 KB
    Part 03-Module 01-Lesson 01_Welcome/01. Welcome to Term 3!.html 4.96 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/08. L1 17 Reducing Risk With System Engineering-tFxkJKcujhQ.zh-CN.vtt 4.95 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.ru.vtt 4.94 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/23. More Kalman Filters-hUnTg5v4tDU.ja.vtt 4.94 KB
    Part 02-Module 01-Lesson 01_Welcome/01. Welcome to Term 2!.html 4.93 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/index.html 4.93 KB
    Part 03-Module 02-Lesson 01_Search/index.html 4.93 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/19. Turtlesim Comms Message Information-f89-UgEb8Y0.en.vtt 4.9 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.en.vtt 4.89 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.pl.vtt 4.89 KB
    Part 03-Module 06-Lesson 01_Completing the Program/01. Congratulations!.html 4.88 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-X7cixvcogl8.ja.vtt 4.87 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. Error Function-V5kkHldUlVU.en.vtt 4.87 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/19. 18 L S D And T-SD1iyzgFf8s.zh-CN.vtt 4.87 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-bQA2ELDNmmg.zh-CN.vtt 4.87 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/02. Introduction-4E6RtK_Ml1I.en.vtt 4.85 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/05. L3 Simple Mover Code-jEO_4xxA_mI.zh-CN.vtt 4.85 KB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-Sn-ZUbZdOn8.ru.vtt 4.81 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/02. ML in The Google Self-Driving Car-lL16AQItG1g.zh-CN.vtt 4.81 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/26. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.pt-PT.vtt 4.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.pt.vtt 4.79 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/02. Working at Mercedes-Benz-Z_hi4djW5aw.zh-CN.vtt 4.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.it.vtt 4.78 KB
    Part 02-Module 04-Lesson 01_PID Control/07. PD Controller - Artificial Intelligence for Robotics-kVYy2kjZjhA.ru.vtt 4.78 KB
    Part 06-Module 01-Lesson 05_Trees/index.html 4.75 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/05. Roslaunch-EsGNppn8UlQ.en.vtt 4.74 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-aHLslaWO-AQ.en.vtt 4.74 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-rH5DKpwYQLY.en.vtt 4.74 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/12. Look Away The Code -pOZW8SdyYsk.en.vtt 4.73 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.en-US.vtt 4.72 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/14. Gaussian NB Example-wpnDwiqTCJA.zh-CN.vtt 4.72 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.en.vtt 4.72 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/28. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72 KB
    Part 01-Module 03-Lesson 02_MiniFlow/index.html 4.71 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/08. Color Spaces and Thresholding-dMI_so4P1Jc.en.vtt 4.71 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/index.html 4.71 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/index.html 4.69 KB
    Part 02-Module 03-Lesson 05_Particle Filters/06. Particle Filters-4S-sx5_cmLU.zh-CN.vtt 4.69 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/03. Target Your Application to An Employer-X9JBzbrkcvs.zh-CN.vtt 4.67 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67 KB
    assets/css/fonts/KaTeX_Size3-Regular.woff 4.66 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-aHLslaWO-AQ.ja.vtt 4.66 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/22. 21 L TrajectoriesWithBoundaryConditions-p73Jma9nW-Q.zh-CN.vtt 4.64 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/13. Programming Assignment-gTEQHV_1E2k.zh-CN.vtt 4.64 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.en.vtt 4.63 KB
    Part 03-Module 02-Lesson 01_Search/22. Left Turn Policy-rH5DKpwYQLY.zh-CN.vtt 4.63 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/11. UKF What's the Problem-OFb47Lu9JfM.en.vtt 4.62 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/05. Types of Motion Planning Algorithms-6-K1aLTEvk8.zh-CN.vtt 4.62 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61 KB
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-bjZy-RVms_8.en.vtt 4.61 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/08. Hybrid A Introduction-NuurQejBk0o.en.vtt 4.59 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.zh-CN.vtt 4.59 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/04. Interview with Art - Part 1-ClLYamtaO-Q.ar.vtt 4.59 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/index.html 4.58 KB
    Part 03-Module 03-Lesson 04_Inference Performance/index.html 4.57 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.ar.vtt 4.57 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/23. More Kalman Filters-hUnTg5v4tDU.zh-CN.vtt 4.57 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/03. L5 07 Other Types Of Techincal Safety Requirements-9xIlkXobXS0.en.vtt 4.56 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/13. Interview with Art - Part 3-M6PKr3S1rPg.pt-BR.vtt 4.56 KB
    Part 02-Module 04-Lesson 01_PID Control/index.html 4.55 KB
    Part 02-Module 04-Lesson 06_The End/01. Congratulations!.html 4.54 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/28. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54 KB
    Part 01-Module 04-Lesson 10_The End/01. Congratulations!.html 4.54 KB
    Part 01-Module 04-Lesson 08_Object Detection/img/8.png 4.54 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/index.html 4.53 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/index.html 4.53 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.pt-BR.vtt 4.53 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/11. Nearest Neighbor Advantages And Disadvantages-snXId_LyzXs.zh-CN.vtt 4.53 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/13. Quick Sort-kUon6854joI.zh-CN.vtt 4.52 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.es-MX.vtt 4.52 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/15. Radar Measurements-LOz9AaHvB8M.en.vtt 4.51 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/index.html 4.51 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/index.html 4.51 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-CyQ2gl-9W4o.ja.vtt 4.5 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/index.html 4.48 KB
    Part 02-Module 03-Lesson 03_Markov Localization/31. Markov Assumption For Observation Model-dyDjINdrIz0.en.vtt 4.48 KB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion-M7ZJ74RVHqo.ru.vtt 4.48 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.pt-BR.vtt 4.47 KB
    Part 02-Module 04-Lesson 01_PID Control/13. Twiddle - Artificial Intelligence for Robotics-2uQ2BSzDvXs.ja.vtt 4.46 KB
    Part 03-Module 02-Lesson 01_Search/17. Dynamic Programming-r2bPY2s9wII.ja.vtt 4.46 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.ar.vtt 4.46 KB
    Part 01-Module 01-Lesson 01_Welcome/index.html 4.46 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/index.html 4.45 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/05. Convolutional Networks-ISHGyvsT0QY.pt-BR.vtt 4.45 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.en-US.vtt 4.42 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/08. Hybrid A Introduction-NuurQejBk0o.zh-CN.vtt 4.42 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.en.vtt 4.42 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/index.html 4.41 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/04. Meet Chris-0ccflD9x5WU.zh-CN.vtt 4.41 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/15. ND013 M4 L6 Converting Landmark Observations-BrQfVd4JXpg.zh-CN.vtt 4.41 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/02. Introduction-4E6RtK_Ml1I.zh-CN.vtt 4.4 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/index.html 4.4 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/index.html 4.39 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/05. Convolutional Networks-ISHGyvsT0QY.en.vtt 4.38 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-joTa_FeMZ2s.ar.vtt 4.36 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/07. Pinhole Camera Model and Types of Distortion-FBHyHUN-A8c.en.vtt 4.35 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/index.html 4.34 KB
    Part 03-Module 02-Lesson 02_Prediction/05. 06 L Data Driven Example Trajectory Clustering-jbFeQ9P2V9A.en.vtt 4.33 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.pt-BR.vtt 4.32 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/index.html 4.32 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-6UJFZf40aBg.ru.vtt 4.32 KB
    Part 05-Module 01-Lesson 03_Udacity Professional Profile Review/index.html 4.32 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/04. LeNet Implementation-EA3f6zTbbo0.en.vtt 4.32 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/25. Measurement Prediction-qDX8nL_OT60.zh-CN.vtt 4.31 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/index.html 4.31 KB
    Part 06-Module 01-Lesson 06_Graphs/index.html 4.31 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.ar.vtt 4.3 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/08. Color Spaces and Thresholding-dMI_so4P1Jc.zh-CN.vtt 4.3 KB
    Part 03-Module 02-Lesson 01_Search/04. Motion Planning-KHAu5A_flcQ.ru.vtt 4.3 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/index.html 4.3 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/20. Turtlesim Comms Echo Messages-HNA7eKhYcyA.en.vtt 4.29 KB
    Part 01-Module 04-Lesson 09_Vehicle Detection and Tracking Project/index.html 4.29 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/25. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.pt-BR.vtt 4.29 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/index.html 4.28 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/12. Look Away The Code -pOZW8SdyYsk.zh-CN.vtt 4.28 KB
    Part 03-Module 02-Lesson 02_Prediction/07. 08 L ThinkingAboutModelBasedApproaches-2JHmXN4AKNY.en.vtt 4.27 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/32. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27 KB
    Part 01-Module 03-Lesson 08_Keras/03. Deep Learning Frameworks-i2mmnu-t8-c.en.vtt 4.27 KB
    Part 03-Module 06-Lesson 01_Completing the Program/01. CarND Final Video-V2-hDsYM2Zd0jg.en.vtt 4.27 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/01. L10 Localization Overview A01 Intro To AI-8p4C7jvfwvQ.en.vtt 4.27 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/25. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.en.vtt 4.26 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/index.html 4.25 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/18. 17 L The Need For T-4WsqXkB8zqQ.en.vtt 4.25 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.ja.vtt 4.24 KB
    Part 02-Module 04-Lesson 01_PID Control/04. Implement P Controller - Artificial Intelligence for Robotics-OrJgrTc5d04.ru.vtt 4.24 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/32. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-aHLslaWO-AQ.zh-CN.vtt 4.24 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.pt-BR.vtt 4.23 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/index.html 4.22 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.en-US.vtt 4.22 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/index.html 4.21 KB
    Part 02-Module 04-Lesson 01_PID Control/13. Twiddle - Artificial Intelligence for Robotics-2uQ2BSzDvXs.en.vtt 4.21 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.en.vtt 4.21 KB
    Part 01-Module 03-Lesson 08_Keras/index.html 4.21 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/14. Perspective Transform-JTesiOANhB0.en.vtt 4.21 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/index.html 4.21 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-FdT1g_Bzjm0.ja.vtt 4.2 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/index.html 4.19 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/index.html 4.19 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/19. Turtlesim Comms Message Information-f89-UgEb8Y0.zh-CN.vtt 4.19 KB
    Part 02-Module 03-Lesson 04_Motion Models/index.html 4.19 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/05. Roslaunch-EsGNppn8UlQ.zh-CN.vtt 4.18 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/index.html 4.18 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17 KB
    Part 03-Module 02-Lesson 02_Prediction/07. 08 L ThinkingAboutModelBasedApproaches-2JHmXN4AKNY.zh-CN.vtt 4.17 KB
    Part 06-Module 01-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.en-US.vtt 4.17 KB
    Part 02-Module 04-Lesson 01_PID Control/15. Parameter Optimization Solution - Artificial Intelligence for Robotics-YQ5Pa-OKQm0.en.vtt 4.17 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/index.html 4.17 KB
    Part 06-Module 01-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.en.vtt 4.17 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/05. Brainstorming-LJFYhMDCCsU.zh-CN.vtt 4.17 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/index.html 4.16 KB
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-bjZy-RVms_8.zh-CN.vtt 4.16 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/04. 03 L The Behavior Problem-5t-oVAZagT8.en.vtt 4.15 KB
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-bjZy-RVms_8.ja.vtt 4.15 KB
    Part 03-Module 02-Lesson 05_Path Planning Project/index.html 4.15 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/06. Nodes And Topics-t5xWx5Zgmk0.en.vtt 4.14 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/09. LeNet on AWS-1shr08mozc0.en.vtt 4.14 KB
    Part 03-Module 02-Lesson 01_Search/17. Dynamic Programming-r2bPY2s9wII.en.vtt 4.13 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/05. Brainstorming-LJFYhMDCCsU.pt-BR.vtt 4.13 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.en-US.vtt 4.12 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.en.vtt 4.12 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/04. LeNet Implementation-EA3f6zTbbo0.zh-CN.vtt 4.12 KB
    Part 02-Module 02-Lesson 07_Unscented Kalman Filter Project/index.html 4.12 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/05. Refresh Estimation Problem-Uwq7_6slV_M.en.vtt 4.12 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.zh-CN.vtt 4.11 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/32. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.en.vtt 4.11 KB
    Part 03-Module 06-Lesson 01_Completing the Program/01. CarND Final Video-V2-hDsYM2Zd0jg.zh-CN.vtt 4.11 KB
    Part 01-Module 03-Lesson 08_Keras/03. Deep Learning Frameworks-i2mmnu-t8-c.zh-CN.vtt 4.11 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/26. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.it.vtt 4.1 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/13. Interview with Art - Part 3-M6PKr3S1rPg.en.vtt 4.1 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/index.html 4.09 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-CyQ2gl-9W4o.en.vtt 4.09 KB
    Part 06-Module 01-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.en-US.vtt 4.09 KB
    Part 06-Module 01-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.en.vtt 4.08 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/index.html 4.08 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.pt-PT.vtt 4.08 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.pt.vtt 4.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/22. SVM Gamma Parameter-m2a2K4lprQw.ar.vtt 4.07 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/14. Efficiency of Quick Sort-aMb5GHPGQ1U.pt-BR.vtt 4.07 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/03. L5 07 Other Types Of Techincal Safety Requirements-9xIlkXobXS0.zh-CN.vtt 4.06 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/06. L1 Sebastian-lw3O5Me6FRw.zh-CN.vtt 4.06 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.en-US.vtt 4.06 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.en-US.vtt 4.06 KB
    Part 02-Module 04-Lesson 05_Model Predictive Control Project/index.html 4.06 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.en.vtt 4.05 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.en.vtt 4.05 KB
    Part 02-Module 03-Lesson 03_Markov Localization/31. Markov Assumption For Observation Model-dyDjINdrIz0.zh-CN.vtt 4.04 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.pt-BR.vtt 4.04 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/index.html 4.04 KB
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/index.html 4.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.en.vtt 4.03 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.en-US.vtt 4.03 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.en.vtt 4.03 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/09. LeNet on AWS-1shr08mozc0.zh-CN.vtt 4.02 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/07. Pinhole Camera Model and Types of Distortion-FBHyHUN-A8c.zh-CN.vtt 4.02 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/index.html 4.02 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/28. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01 KB
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/index.html 4.01 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/08. Debugging-Bz1tlvkql9Q.en-US.vtt 4.01 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/08. Debugging-Bz1tlvkql9Q.en.vtt 4.01 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.es-ES.vtt 4.01 KB
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/index.html 4 KB
    Part 01-Module 01-Lesson 02_Workspaces/index.html 4 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/04. Interview with Art - Part 1-ClLYamtaO-Q.pt-BR.vtt 4 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/15. Radar Measurements-LOz9AaHvB8M.zh-CN.vtt 3.99 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/11. UKF What's the Problem-OFb47Lu9JfM.zh-CN.vtt 3.98 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/30. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.pt-BR.vtt 3.97 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/index.html 3.96 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-krV6r7HxmZU.ja.vtt 3.95 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/index.html 3.94 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/02. GitHub profile important items-prvPVTjVkwQ.ar.vtt 3.93 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/32. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.pt-BR.vtt 3.92 KB
    Part 03-Module 02-Lesson 02_Prediction/05. 06 L Data Driven Example Trajectory Clustering-jbFeQ9P2V9A.zh-CN.vtt 3.92 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/18. 17 L The Need For T-4WsqXkB8zqQ.zh-CN.vtt 3.91 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.pt-BR.vtt 3.9 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/index.html 3.89 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.ar.vtt 3.89 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-krV6r7HxmZU.pt-BR.vtt 3.89 KB
    Part 03-Module 02-Lesson 01_Search/17. Dynamic Programming-r2bPY2s9wII.zh-CN.vtt 3.89 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.en-US.vtt 3.89 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.iw.vtt 3.88 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.en.vtt 3.88 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/08. 07 L StatesForASelfDrivingCar-zoN0-IPe0I4.en.vtt 3.88 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/10. Worst Case and Approximation-ZYcmui02J40.zh-CN.vtt 3.88 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-FdT1g_Bzjm0.en.vtt 3.87 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.pt-BR.vtt 3.87 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/index.html 3.86 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/32. 30 L Stochastic Gradient Descent-U9iEGUd9kJ0.zh-CN.vtt 3.86 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/24. Kalman Filter Design-KYEr4BXhD_E.es-ES.vtt 3.86 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/30. Gradient Descent-rhVIF-nigrY.en.vtt 3.85 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/10. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85 KB
    Part 06-Module 01-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.pt-BR.vtt 3.85 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/index.html 3.85 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.pt-BR.vtt 3.85 KB
    Part 02-Module 04-Lesson 02_PID Controller Project/index.html 3.85 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/01. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.83 KB
    Part 01-Module 01-Lesson 01_Welcome/06. Meet the Careers Team-cuKecPpZ7PM.pt-BR.vtt 3.83 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/03. Radar Strengths And Weaknesses-m7kpRg3bEI8.en.vtt 3.83 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-wNQVo6uOgYA.ja.vtt 3.83 KB
    Part 03-Module 02-Lesson 02_Prediction/14. 14 L IntroToNaiveBayes-AkrC_WP1MWk.en.vtt 3.83 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-CyQ2gl-9W4o.zh-CN.vtt 3.82 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/06. L1 Sebastian-lw3O5Me6FRw.en.vtt 3.82 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/04. Interview with Art - Part 1-ClLYamtaO-Q.en.vtt 3.82 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/05. Convolutional Networks-ISHGyvsT0QY.zh-CN.vtt 3.81 KB
    Part 02-Module 04-Lesson 01_PID Control/15. Parameter Optimization Solution - Artificial Intelligence for Robotics-YQ5Pa-OKQm0.ja.vtt 3.81 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-X7YggdDnLaw.es-ES.vtt 3.81 KB
    Part 02-Module 03-Lesson 02_Localization Overview/32. Bayes' Rule-sA5wv56qYc0.zh-CN.vtt 3.8 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-krV6r7HxmZU.en.vtt 3.79 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/10. Process Covariance Matrix-iFcIiqRGaws.en.vtt 3.77 KB
    Part 02-Module 01-Lesson 01_Welcome/index.html 3.77 KB
    Part 02-Module 03-Lesson 03_Markov Localization/04. 03 L Explain Localization Posterior V2-lGpIgbA5ZdA.en.vtt 3.77 KB
    Part 02-Module 04-Lesson 01_PID Control/13. Twiddle - Artificial Intelligence for Robotics-2uQ2BSzDvXs.zh-CN.vtt 3.77 KB
    Part 03-Module 01-Lesson 01_Welcome/index.html 3.77 KB
    assets/css/fonts/KaTeX_Size3-Regular.woff2 3.77 KB
    Part 06-Module 01-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.pt-BR.vtt 3.76 KB
    assets/css/styles.css 3.76 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/07. Kalman Filter Equations In C++ Programming-KV4ZdUnOz9I.en.vtt 3.75 KB
    Part 06-Module 01-Lesson 05_Trees/06. Depth-First Traversals-wp5ohHFTieM.zh-CN.vtt 3.75 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/05. Localizing a Self Driving Car-U-uDtVgezcE.en.vtt 3.74 KB
    Part 02-Module 04-Lesson 01_PID Control/15. Parameter Optimization Solution - Artificial Intelligence for Robotics-YQ5Pa-OKQm0.zh-CN.vtt 3.74 KB
    Part 05-Module 01-Lesson 02_LinkedIn Review/index.html 3.73 KB
    Part 03-Module 06-Lesson 01_Completing the Program/index.html 3.73 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-wNQVo6uOgYA.en.vtt 3.73 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.vi.vtt 3.73 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/06. Collisions-BUaWIjZ_ToY.zh-CN.vtt 3.71 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data-x2dmBUEKQIA.ar.vtt 3.71 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/07. 03 - Data Visualization-_Gto6fQQWFI.en.vtt 3.7 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt 3.7 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt 3.7 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.pt-BR.vtt 3.7 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/24. Kalman Filter Design-KYEr4BXhD_E.ja.vtt 3.68 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-FdT1g_Bzjm0.zh-CN.vtt 3.67 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/13. Interview with Art - Part 3-M6PKr3S1rPg.zh-CN.vtt 3.67 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/10. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt 3.67 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt 3.67 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.es-MX.vtt 3.67 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/14. Perspective Transform-JTesiOANhB0.zh-CN.vtt 3.66 KB
    Part 03-Module 02-Lesson 02_Prediction/14. 14 L IntroToNaiveBayes-AkrC_WP1MWk.zh-CN.vtt 3.66 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/04. 03 L The Behavior Problem-5t-oVAZagT8.zh-CN.vtt 3.65 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/20. Turtlesim Comms Echo Messages-HNA7eKhYcyA.zh-CN.vtt 3.64 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn-R7xQtQzkvTk.ar.vtt 3.64 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/15. Run Turtlesim-hCkE973oY9o.en.vtt 3.64 KB
    Part 01-Module 01-Lesson 01_Welcome/06. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.63 KB
    Part 01-Module 02-Lesson 01_Career Services Available to You/01. Meet the Careers Team-cuKecPpZ7PM.en.vtt 3.63 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/19. Explore the Design Space-FG7M9tWH2nQ.pt-BR.vtt 3.63 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-joTa_FeMZ2s.ja.vtt 3.63 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.en-US.vtt 3.62 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.en.vtt 3.61 KB
    Part 06-Module 01-Lesson 06_Graphs/02. What Is a Graph-p-_DFOyEMV8.zh-CN.vtt 3.61 KB
    Part 03-Module 03-Lesson 01_Elective Advanced Deep Learning/index.html 3.61 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/03. Arrays-OnPP5xDmFv0.zh-CN.vtt 3.61 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.en.vtt 3.6 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/06. Linked Lists in Depth-ZONGA5wmREI.zh-CN.vtt 3.6 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/32. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.6 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/06. Nodes And Topics-t5xWx5Zgmk0.zh-CN.vtt 3.6 KB
    Part 03-Module 04-Lesson 01_Elective Functional Safety/index.html 3.59 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.ja.vtt 3.58 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/24. Kalman Filter Design-KYEr4BXhD_E.en.vtt 3.57 KB
    Part 01-Module 04-Lesson 08_Object Detection/18. HOG Features-DNweoAqjwNQ.en.vtt 3.57 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.pt-BR.vtt 3.57 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/25. Normalized Inputs And Initial Weights-WaHQ9-UXIIg.zh-CN.vtt 3.56 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.es-MX.vtt 3.56 KB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.ar.vtt 3.55 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/05. Refresh Estimation Problem-Uwq7_6slV_M.zh-CN.vtt 3.54 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.ja.vtt 3.54 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.pt-BR.vtt 3.54 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.en.vtt 3.53 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/12. 12 L CreateACostFunctionSpeedPenalty-wGRDT2wTnn8.en.vtt 3.53 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/07. Bubble Sort-h_osLG3GmjE.zh-CN.vtt 3.53 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/17. Extended Kalman Filter-nMUd_esBMM8.en.vtt 3.53 KB
    Part 02-Module 04-Lesson 06_The End/01. CarND Term 2 Outro-dLOe-KiTEw8.en.vtt 3.53 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-X7YggdDnLaw.en.vtt 3.52 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.en-US.vtt 3.52 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.en.vtt 3.52 KB
    Part 02-Module 04-Lesson 01_PID Control/11. PID Implementation - Artificial Intelligence for Robotics-Ag8H3Iit9j4.ru.vtt 3.52 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/08. 07 L StatesForASelfDrivingCar-zoN0-IPe0I4.zh-CN.vtt 3.52 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.en-US.vtt 3.51 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.en-US.vtt 3.51 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/08. Debugging-Bz1tlvkql9Q.pt-BR.vtt 3.51 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.en.vtt 3.5 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.en.vtt 3.5 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.pt-BR.vtt 3.5 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/04. Initialization-agPdu0c5_GM.en.vtt 3.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.pt-BR.vtt 3.5 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.5 KB
    Part 03-Module 02-Lesson 06_Coming Up Electives/index.html 3.49 KB
    Part 03-Module 02-Lesson 02_Prediction/11. 11 L MultimodalEstimationApproaches-u1Tmt0Qdlgk.en.vtt 3.49 KB
    Part 01-Module 05-Lesson 01_Get Ready for Term 2 C++/index.html 3.48 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/20. GoogLeNet-sdT5f8n7IcI.en.vtt 3.47 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.pt-BR.vtt 3.47 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/06. Rosdep-Kei6k78fydE.en.vtt 3.47 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/20. Kalman Filter Land-LXJ5jrvDuEk.es-ES.vtt 3.47 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.en.vtt 3.46 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.en.vtt 3.46 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.en.vtt 3.46 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-joTa_FeMZ2s.pt-BR.vtt 3.46 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/45deg-2.png 3.46 KB
    Part 01-Module 04-Lesson 10_The End/index.html 3.46 KB
    Part 02-Module 04-Lesson 06_The End/index.html 3.46 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/17. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/12. 12 L CreateACostFunctionSpeedPenalty-wGRDT2wTnn8.zh-CN.vtt 3.45 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/07. L4 13 ASIL Decomposition-dphScT1QTNY.en.vtt 3.45 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.pt-BR.vtt 3.45 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.en-US.vtt 3.44 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.en.vtt 3.44 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44 KB
    Part 02-Module 04-Lesson 01_PID Control/14. Parameter Optimization - Artificial Intelligence for Robotics-A2b3F5Ae53Y.en.vtt 3.43 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-krV6r7HxmZU.zh-CN.vtt 3.42 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/08. Notation Intro-xHwIU4j3gBc.zh-CN.vtt 3.41 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/02. Elevator Pitch-S-nAHPrkQrQ.zh-CN.vtt 3.4 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Layers-pg99FkXYK0M.en.vtt 3.4 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.en.vtt 3.4 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/04. Interview with Art - Part 1-ClLYamtaO-Q.zh-CN.vtt 3.4 KB
    Part 06-Module 01-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.pt-BR.vtt 3.4 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/07. 03 - Data Visualization-_Gto6fQQWFI.zh-CN.vtt 3.39 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/19. Explore the Design Space-FG7M9tWH2nQ.en.vtt 3.39 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/11. 10 Backprop-wSXcrBbY8oE.pt-BR.vtt 3.39 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/08. Exact and Approximate Algorithms-3A8YqOYlAwQ.zh-CN.vtt 3.39 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/04. L4 06 Allocation Of Requirements To Architecture-cDkQLZ3PJqM.en.vtt 3.39 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-X7YggdDnLaw.ja.vtt 3.38 KB
    Part 06-Module 01-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.en-US.vtt 3.38 KB
    Part 06-Module 01-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.en.vtt 3.38 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.en.vtt 3.37 KB
    Part 02-Module 03-Lesson 05_Particle Filters/20. Resampling Wheel-wNQVo6uOgYA.zh-CN.vtt 3.36 KB
    Part 02-Module 03-Lesson 03_Markov Localization/04. 03 L Explain Localization Posterior V2-lGpIgbA5ZdA.zh-CN.vtt 3.36 KB
    Part 01-Module 04-Lesson 08_Object Detection/02. Intro to Arpan and Drew-zfWvntpxbK0.en.vtt 3.36 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/10. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.ja.vtt 3.36 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/05. A Faster Algorithm-J7S3CHFBZJA.zh-CN.vtt 3.35 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/03. Radar Strengths And Weaknesses-m7kpRg3bEI8.zh-CN.vtt 3.35 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.en.vtt 3.35 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/03. 02 L The Motion Planning Problem-daGIOru4Bi4.en.vtt 3.35 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/07. Introduction To Evaluating Risks-3N-6YK_pPzA.en.vtt 3.34 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid - Artificial Intelligence for Robotics-1l7bWfz8sJw.ru.vtt 3.33 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-joTa_FeMZ2s.en.vtt 3.33 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/19.png 3.32 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/07. Kalman Filter Equations In C++ Programming-KV4ZdUnOz9I.zh-CN.vtt 3.32 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.es-MX.vtt 3.32 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/05. Localizing a Self Driving Car-U-uDtVgezcE.zh-CN.vtt 3.31 KB
    Part 02-Module 03-Lesson 03_Markov Localization/14. Apply Bayes Rule With Additional Conditions-RsHS2o3zjcw.en.vtt 3.3 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-X7YggdDnLaw.zh-CN.vtt 3.3 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/heaviside-step-function-2.gif 3.29 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.pt-BR.vtt 3.29 KB
    Part 06-Module 01-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.en-US.vtt 3.29 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.zh-CN.vtt 3.29 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Layers-pg99FkXYK0M.pt-BR.vtt 3.29 KB
    Part 06-Module 01-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.en.vtt 3.29 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.en-US.vtt 3.29 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/20. Kalman Filter Land-LXJ5jrvDuEk.en.vtt 3.29 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.en.vtt 3.28 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.pt-BR.vtt 3.28 KB
    Part 02-Module 04-Lesson 06_The End/01. CarND Term 2 Outro-dLOe-KiTEw8.zh-CN.vtt 3.28 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/17. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/10. Process Covariance Matrix-iFcIiqRGaws.zh-CN.vtt 3.27 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.pt-BR.vtt 3.27 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt 3.26 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt 3.26 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/03. Resume Structure-POM0MqLTj98.zh-CN.vtt 3.26 KB
    Part 02-Module 03-Lesson 05_Particle Filters/26. 2012-QgOUu2sUDzg.en.vtt 3.26 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-3xBycKfnCOQ.ru.vtt 3.26 KB
    Part 02-Module 03-Lesson 02_Localization Overview/01. Introduction-Uqt_pRbR8rI.th.vtt 3.25 KB
    Part 06-Module 01-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.en-US.vtt 3.25 KB
    Part 02-Module 04-Lesson 01_PID Control/07. PD Controller - Artificial Intelligence for Robotics-kVYy2kjZjhA.ja.vtt 3.25 KB
    Part 06-Module 01-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.en.vtt 3.25 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn-olGPVtH7KGU.ar.vtt 3.24 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/13. 08 - Side Cameras-GumTdw9mjL0.en.vtt 3.23 KB
    Part 02-Module 03-Lesson 03_Markov Localization/20. Explain Recursive Structure-d0GrWJeVFjU.en.vtt 3.23 KB
    Part 01-Module 04-Lesson 08_Object Detection/18. HOG Features-DNweoAqjwNQ.zh-CN.vtt 3.22 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/15. Run Turtlesim-hCkE973oY9o.zh-CN.vtt 3.22 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/05. Writing the Body-aK9Qnv3a6Wg.es-MX.vtt 3.22 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data-x2dmBUEKQIA.ja.vtt 3.21 KB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.ar.vtt 3.21 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.es-MX.vtt 3.2 KB
    Part 02-Module 01-Lesson 01_Welcome/01. Term 2 Intro-LD5VEaq1WdY.en.vtt 3.2 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/20. GoogLeNet-sdT5f8n7IcI.zh-CN.vtt 3.2 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.en-US.vtt 3.2 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/24. Kalman Filter Design-KYEr4BXhD_E.zh-CN.vtt 3.2 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.en.vtt 3.2 KB
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-zlCJQmxvrkE.en.vtt 3.2 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.pt-BR.vtt 3.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.es-ES.vtt 3.2 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/01. Why Network-exjEm9Paszk.pt-BR.vtt 3.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.es.vtt 3.19 KB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-Sn-ZUbZdOn8.ja.vtt 3.19 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/14. Assignment Sigma Point Generation-TIc3n-cxTqc.en.vtt 3.18 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/12. L6 Sebastian-AD47B4rAKyY.en.vtt 3.18 KB
    Part 02-Module 03-Lesson 05_Particle Filters/01. Field Trip-2ocy_7PJtfA.ja.vtt 3.17 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.pt-PT.vtt 3.17 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/20. Kalman Filter Land-LXJ5jrvDuEk.ja.vtt 3.17 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.en-US.vtt 3.17 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.pt.vtt 3.17 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.en-US.vtt 3.17 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.en.vtt 3.17 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.en.vtt 3.16 KB
    Part 06-Module 01-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.en-US.vtt 3.16 KB
    Part 03-Module 02-Lesson 02_Prediction/06. 07 L TrajectoryClustering2 - Online Prediction-UPiED4soM4w.en.vtt 3.16 KB
    Part 06-Module 01-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.en.vtt 3.16 KB
    Part 06-Module 01-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.pt-BR.vtt 3.16 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/05. L5 12 Allocation Of Requirements To System Acrchitecture Elements-dA2up9vZCcM.en.vtt 3.15 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/07. L4 13 ASIL Decomposition-dphScT1QTNY.zh-CN.vtt 3.15 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/02. GitHub profile important items-prvPVTjVkwQ.pt-BR.vtt 3.14 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.it.vtt 3.13 KB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-Sn-ZUbZdOn8.en.vtt 3.13 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/22. SVM Gamma Parameter-m2a2K4lprQw.pt-BR.vtt 3.13 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/08. L4 15 Fault Tolerant Time Interval-o4PzRfVN_to.en.vtt 3.13 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/08. Debugging-Bz1tlvkql9Q.zh-CN.vtt 3.13 KB
    Part 01-Module 04-Lesson 08_Object Detection/14. Color Spaces-Adunl74VJIY.en.vtt 3.13 KB
    Part 03-Module 02-Lesson 02_Prediction/03. 04 L Model Vs Data Driven Approaches-ehfA_NC7Ka4.en.vtt 3.13 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.en.vtt 3.13 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/17. Extended Kalman Filter-nMUd_esBMM8.zh-CN.vtt 3.12 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/30. 29 L Implementing Feasibility-8tD8Os9_gKc.en.vtt 3.12 KB
    Part 06-Module 01-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.pt-BR.vtt 3.12 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/14. Programming Assignment Solution-udsB-13ntY8.en.vtt 3.11 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/07. Introduction To Evaluating Risks-3N-6YK_pPzA.zh-CN.vtt 3.11 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/07. Efficiency-I-RASDPbDrI.zh-CN.vtt 3.11 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/03. 02 L The Motion Planning Problem-daGIOru4Bi4.zh-CN.vtt 3.11 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/02. 01 L Lesson Outline-qyH-1BMCiUY.en.vtt 3.1 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-jkJ4dbbpVCQ.zh-CN.vtt 3.09 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/22. SVM Gamma Parameter-m2a2K4lprQw.en.vtt 3.09 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.pl.vtt 3.09 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.ja.vtt 3.08 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/21. Cross Entropy-tRsSi_sqXjI.ja-JP.vtt 3.08 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/04. Initialization-agPdu0c5_GM.zh-CN.vtt 3.08 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/03. Dijkstra's Algorithm-SoPMK03cOgk.zh-CN.vtt 3.07 KB
    Part 02-Module 04-Lesson 01_PID Control/12. PID Implementation Solution - Artificial Intelligence for Robotics-dgZnqCfyCoA.ru.vtt 3.07 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/13. 08 - Side Cameras-GumTdw9mjL0.zh-CN.vtt 3.07 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.ar.vtt 3.07 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/22. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.pt-BR.vtt 3.07 KB
    Part 02-Module 04-Lesson 01_PID Control/14. Parameter Optimization - Artificial Intelligence for Robotics-A2b3F5Ae53Y.zh-CN.vtt 3.06 KB
    Part 02-Module 04-Lesson 01_PID Control/14. Parameter Optimization - Artificial Intelligence for Robotics-A2b3F5Ae53Y.ja.vtt 3.06 KB
    Part 03-Module 02-Lesson 02_Prediction/11. 11 L MultimodalEstimationApproaches-u1Tmt0Qdlgk.zh-CN.vtt 3.06 KB
    Part 02-Module 03-Lesson 05_Particle Filters/01. Field Trip-2ocy_7PJtfA.en.vtt 3.05 KB
    Part 06-Module 01-Lesson 06_Graphs/13. Eulerian Path-zS34kHSo7fs.zh-CN.vtt 3.05 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Layers-pg99FkXYK0M.zh-CN.vtt 3.04 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/06. Rosdep-Kei6k78fydE.zh-CN.vtt 3.04 KB
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-zlCJQmxvrkE.ja.vtt 3.04 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.zh-CN.vtt 3.04 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/21. Cross Entropy-tRsSi_sqXjI.pt-BR.vtt 3.04 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/06. Dynamic Programming-VQeFcG9pjJU.zh-CN.vtt 3.04 KB
    Part 02-Module 03-Lesson 05_Particle Filters/01. Field Trip-2ocy_7PJtfA.zh-CN.vtt 3.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.zh-CN.vtt 3.03 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.en-US.vtt 3.03 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/02. L21 Advanced Techniques For Lane Finding A02 L Welcome To Computer Vision-FRBWnuf1OIg.en.vtt 3.03 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-UAdcKWLi9G8.en.vtt 3.03 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.en.vtt 3.02 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.pt-BR.vtt 3.02 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/05. Hashing-kCPFfHx_LgQ.zh-CN.vtt 3.02 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.pt-BR.vtt 3.02 KB
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-Sn-ZUbZdOn8.zh-CN.vtt 3.02 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.ar.vtt 3.01 KB
    Part 02-Module 04-Lesson 01_PID Control/07. PD Controller - Artificial Intelligence for Robotics-kVYy2kjZjhA.en.vtt 3 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/22. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.en-US.vtt 3 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3 KB
    Part 01-Module 04-Lesson 08_Object Detection/02. Intro to Arpan and Drew-zfWvntpxbK0.zh-CN.vtt 3 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/06. 05 L Formalizing FSMs-sEZn3iZgOaI.en.vtt 2.99 KB
    Part 02-Module 04-Lesson 01_PID Control/02. PID Control - Artificial Intelligence for Robotics--8w0prceask.ru.vtt 2.99 KB
    Part 02-Module 04-Lesson 01_PID Control/04. Implement P Controller - Artificial Intelligence for Robotics-OrJgrTc5d04.ja.vtt 2.98 KB
    Part 01-Module 04-Lesson 08_Object Detection/40. Traditional vs. Deep Learning Approach-_IFdaC0lWhI.en.vtt 2.98 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/03. L9 03 L GPUs-8eP2EpfBli0.en-US.vtt 2.97 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.es-ES.vtt 2.96 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.pt-BR.vtt 2.96 KB
    Part 03-Module 02-Lesson 02_Prediction/06. 07 L TrajectoryClustering2 - Online Prediction-UPiED4soM4w.zh-CN.vtt 2.95 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.en.vtt 2.95 KB
    Part 02-Module 03-Lesson 05_Particle Filters/26. 2012-QgOUu2sUDzg.zh-CN.vtt 2.95 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/11. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/03. Lesson Map-_u8Vk58VqxY.en.vtt 2.95 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/11. 10 Backprop-wSXcrBbY8oE.en.vtt 2.94 KB
    Part 02-Module 03-Lesson 02_Localization Overview/02. Localization-31xZhj2uPr4.en.vtt 2.94 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/04. L4 06 Allocation Of Requirements To Architecture-cDkQLZ3PJqM.zh-CN.vtt 2.94 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.es-ES.vtt 2.94 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/08. L6 11-12 Software Safety Robustness And Quality-RQEnvtti3sM.en.vtt 2.94 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.en-US.vtt 2.93 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.en.vtt 2.93 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/02. GitHub profile important items-prvPVTjVkwQ.en.vtt 2.93 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-YaZu4waSryo.zh-CN.vtt 2.92 KB
    Part 03-Module 02-Lesson 01_Search/04. Motion Planning-KHAu5A_flcQ.ja.vtt 2.92 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/08. Efficiency of Bubble Sort-KddkHygi7is.pt-BR.vtt 2.92 KB
    Part 02-Module 01-Lesson 01_Welcome/01. Term 2 Intro-LD5VEaq1WdY.zh-CN.vtt 2.92 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/19. Explore the Design Space-FG7M9tWH2nQ.zh-CN.vtt 2.92 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/10. Data Association- Nearest Neighbor-nG_pFGT-fuo.en.vtt 2.91 KB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.ja.vtt 2.9 KB
    Part 02-Module 03-Lesson 05_Particle Filters/26. 2012-QgOUu2sUDzg.ja.vtt 2.9 KB
    Part 06-Module 01-Lesson 06_Graphs/10. DFS-BC8jEidd2EQ.zh-CN.vtt 2.9 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/02. 01 L Lesson Outline-qyH-1BMCiUY.zh-CN.vtt 2.9 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick-3Xw6FKYP7e4.ar.vtt 2.89 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/22. 16 L Minimizing Cross-Entropy-YrDMXFhvh9E.zh-CN.vtt 2.89 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88 KB
    Part 06-Module 01-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.pt-BR.vtt 2.88 KB
    Part 06-Module 01-Lesson 05_Trees/15. Heaps-M3B0UJWS_ag.zh-CN.vtt 2.88 KB
    Part 01-Module 04-Lesson 08_Object Detection/14. Color Spaces-Adunl74VJIY.zh-CN.vtt 2.88 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.en.vtt 2.88 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/04. Build Robots with ROS-7eaz0qW7y_I.en.vtt 2.88 KB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.pt-BR.vtt 2.87 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-RXpuBRA-cpo.ru.vtt 2.87 KB
    Part 02-Module 04-Lesson 01_PID Control/04. Implement P Controller - Artificial Intelligence for Robotics-OrJgrTc5d04.en.vtt 2.87 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn-R7xQtQzkvTk.ja.vtt 2.86 KB
    Part 06-Module 01-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.en-US.vtt 2.86 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy--gJJmckPBAg.ar.vtt 2.86 KB
    Part 06-Module 01-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.en.vtt 2.86 KB
    Part 03-Module 01-Lesson 01_Welcome/01. CarND Term 3 Intro-v4pRPMIudM0.en.vtt 2.85 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/09. String Keys-WyFwieF1NN4.zh-CN.vtt 2.85 KB
    Part 02-Module 03-Lesson 03_Markov Localization/20. Explain Recursive Structure-d0GrWJeVFjU.zh-CN.vtt 2.85 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/24. 23 L DerivationOverview-TuVp_HhQq7A.en.vtt 2.85 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/08. L4 15 Fault Tolerant Time Interval-o4PzRfVN_to.zh-CN.vtt 2.84 KB
    Part 03-Module 05-Lesson 05_System Integration Project/02. L5 01 L Project Introduction-UT34zkxfS_M.en.vtt 2.84 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/09. L1 19 Introduction To Iso26262-bjvpmBOG60Q.en.vtt 2.84 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-6UJFZf40aBg.ja.vtt 2.84 KB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion-M7ZJ74RVHqo.ja.vtt 2.83 KB
    Part 02-Module 03-Lesson 03_Markov Localization/14. Apply Bayes Rule With Additional Conditions-RsHS2o3zjcw.zh-CN.vtt 2.83 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/weight-label-reference.gif 2.83 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.pt-BR.vtt 2.83 KB
    Part 06-Module 01-Lesson 05_Trees/09. Insert-j6PkPa2ZHWg.zh-CN.vtt 2.83 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt 2.82 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt 2.82 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.pt-BR.vtt 2.82 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.ar.vtt 2.82 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.ar.vtt 2.82 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/11. Queues-XAbzlilAHZw.zh-CN.vtt 2.81 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses-U9-ZsbaaGAs.ar.vtt 2.81 KB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion-M7ZJ74RVHqo.es-ES.vtt 2.81 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.pt-PT.vtt 2.81 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.pt.vtt 2.8 KB
    Part 02-Module 03-Lesson 05_Particle Filters/07. Using Robot Class-1hgVZtRIjFU.ja.vtt 2.8 KB
    Part 03-Module 02-Lesson 02_Prediction/03. 04 L Model Vs Data Driven Approaches-ehfA_NC7Ka4.zh-CN.vtt 2.8 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-8c479K2UCZo.ru.vtt 2.8 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.ru.vtt 2.8 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.es-ES.vtt 2.8 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/12. L6 Sebastian-AD47B4rAKyY.zh-CN.vtt 2.79 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.pt-BR.vtt 2.79 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.zh-CN.vtt 2.79 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/14. Assignment Sigma Point Generation-TIc3n-cxTqc.zh-CN.vtt 2.79 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/03. L2 05 L Tailoring The Safety Lifecycle-Ym9raP5zb2U.en.vtt 2.79 KB
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-zlCJQmxvrkE.zh-CN.vtt 2.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.it.vtt 2.78 KB
    Part 03-Module 02-Lesson 01_Search/04. Motion Planning-KHAu5A_flcQ.en.vtt 2.78 KB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.en.vtt 2.78 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.pt-BR.vtt 2.78 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.ja.vtt 2.78 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-joTa_FeMZ2s.zh-CN.vtt 2.77 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn-R7xQtQzkvTk.en.vtt 2.77 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/30. 29 L Implementing Feasibility-8tD8Os9_gKc.zh-CN.vtt 2.77 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-6UJFZf40aBg.en.vtt 2.77 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn-R7xQtQzkvTk.pt-BR.vtt 2.76 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/06. 05 L Formalizing FSMs-sEZn3iZgOaI.zh-CN.vtt 2.75 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.en-US.vtt 2.75 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/34. Outro-G3soGuQeHGU.en.vtt 2.75 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.en.vtt 2.75 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.en.vtt 2.75 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/05. L5 12 Allocation Of Requirements To System Acrchitecture Elements-dA2up9vZCcM.zh-CN.vtt 2.75 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.en.vtt 2.75 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.en.vtt 2.75 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.es-MX.vtt 2.74 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt 2.74 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt 2.74 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.es-MX.vtt 2.74 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.pt-PT.vtt 2.74 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-UAdcKWLi9G8.zh-CN.vtt 2.74 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.pt.vtt 2.74 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/06. Intro to Sorting-Z6yuIen71zM.zh-CN.vtt 2.74 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/05. LeNet Training Pipeline-yof-J8Xktlk.en.vtt 2.73 KB
    Part 01-Module 01-Lesson 01_Welcome/03. Overview-RZ5iolr4RGs.en.vtt 2.73 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.pt-PT.vtt 2.73 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.it.vtt 2.73 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.pt.vtt 2.73 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.it.vtt 2.72 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/01. Course Introduction-NKBUbUiedzc.zh-CN.vtt 2.72 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.es-MX.vtt 2.71 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/10. Data Association- Nearest Neighbor-nG_pFGT-fuo.zh-CN.vtt 2.71 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/11. 10 Backprop-wSXcrBbY8oE.zh-CN.vtt 2.71 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/08. Classsification Example-Dh625piH7Z0.en.vtt 2.7 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.en.vtt 2.7 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/07. Use Your Elevator Pitch-e-v60ieggSs.pt-BR.vtt 2.7 KB
    Part 02-Module 03-Lesson 03_Markov Localization/15. Explain Bayes Rule And Apply Law Of Total Probability-p2qfHa9G7_k.en.vtt 2.7 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.pt-BR.vtt 2.7 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basics Unscented Transformation-8jbckHQDl4A.en.vtt 2.7 KB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion-M7ZJ74RVHqo.en.vtt 2.7 KB
    Part 01-Module 04-Lesson 08_Object Detection/40. Traditional vs. Deep Learning Approach-_IFdaC0lWhI.zh-CN.vtt 2.69 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/21. Cross Entropy-tRsSi_sqXjI.en.vtt 2.68 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/11. L4 Sebastian-0L2DG60xWy8.en.vtt 2.68 KB
    Part 06-Module 01-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.en-US.vtt 2.68 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/14. Programming Assignment Solution-udsB-13ntY8.zh-CN.vtt 2.68 KB
    Part 06-Module 01-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.en.vtt 2.67 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/19. Dropout-6DcImJS8uV8.pt-BR.vtt 2.67 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/03. L2 05 L Tailoring The Safety Lifecycle-Ym9raP5zb2U.zh-CN.vtt 2.67 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/img/45deg-1.png 2.67 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/18. Naive Bayes Strengths and Weaknesses-nfbKTrufPOs.zh-CN.vtt 2.66 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.en.vtt 2.66 KB
    Part 06-Module 01-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.pt-BR.vtt 2.66 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/11. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/04. L5 09 Technical Safety Requirement Attributes-EOYTl2e8wEs.en.vtt 2.66 KB
    Part 03-Module 02-Lesson 01_Search/23. Planning Conclusion-M7ZJ74RVHqo.zh-CN.vtt 2.65 KB
    Part 06-Module 01-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.pt-BR.vtt 2.65 KB
    Part 01-Module 04-Lesson 10_The End/01. CarND Term 1 Outro-5Apiqg20W8M.en.vtt 2.65 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/02. GitHub profile important items-prvPVTjVkwQ.zh-CN.vtt 2.65 KB
    Part 06-Module 01-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.en-US.vtt 2.65 KB
    Part 06-Module 01-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.en.vtt 2.65 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/01. L1 01 L Introduction To Module-cHadgZtuDZA.en.vtt 2.65 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/02. Tracking Intro-BkjQzEyJWrE.en.vtt 2.64 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.en.vtt 2.64 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/19. Dropout-6DcImJS8uV8.en-US.vtt 2.64 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.ar.vtt 2.64 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.pt-BR.vtt 2.63 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/04. Writing Your Introduction-5S5PH73WLLY.es-MX.vtt 2.63 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/23. Evaluating The Performance-1HieeV8IUv8.en.vtt 2.61 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/06. L6 09 Software Safety Requirments Architecture Testing And Intergration-OJMGRtJciNI.en.vtt 2.61 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-CvTXyvw7QLc.ar.vtt 2.61 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/01. Get an Interview with a Cover Letter!-BH1KY63YfAM.zh-CN.vtt 2.61 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.ja.vtt 2.61 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/05. LeNet Training Pipeline-yof-J8Xktlk.zh-CN.vtt 2.61 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.ja.vtt 2.61 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/06. Quick Fixes-Lb9e2KemR6I.ar.vtt 2.61 KB
    Part 02-Module 04-Lesson 01_PID Control/07. PD Controller - Artificial Intelligence for Robotics-kVYy2kjZjhA.zh-CN.vtt 2.6 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data-x2dmBUEKQIA.en.vtt 2.6 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.es-ES.vtt 2.6 KB
    Part 01-Module 01-Lesson 01_Welcome/03. Overview-RZ5iolr4RGs.zh-CN.vtt 2.6 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/11. L4 Sebastian-0L2DG60xWy8.zh-CN.vtt 2.6 KB
    Part 03-Module 02-Lesson 01_Search/13. Print Path-6UJFZf40aBg.zh-CN.vtt 2.59 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/03. Lesson Map-_u8Vk58VqxY.zh-CN.vtt 2.59 KB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.ar.vtt 2.59 KB
    Part 02-Module 03-Lesson 05_Particle Filters/07. Using Robot Class-1hgVZtRIjFU.en.vtt 2.59 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.en.vtt 2.58 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/09. L1 19 Introduction To Iso26262-bjvpmBOG60Q.zh-CN.vtt 2.58 KB
    Part 06-Module 01-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.en-US.vtt 2.58 KB
    Part 01-Module 04-Lesson 08_Object Detection/26. Train a Classifier-EBEN6KLQm8A.en.vtt 2.58 KB
    Part 06-Module 01-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.en.vtt 2.58 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/03. L9 03 L GPUs-8eP2EpfBli0.en.vtt 2.58 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt 2.58 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt 2.58 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.pt-BR.vtt 2.58 KB
    Part 06-Module 01-Lesson 05_Trees/19. Red-Black Trees - Insertion-dIuWLtWnkgs.zh-CN.vtt 2.58 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.pt-PT.vtt 2.58 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.pt.vtt 2.57 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/22.png 2.57 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/02. Module Introduction-uyLRFMI4HkA.en.vtt 2.57 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/03. Good GitHub repository-qBi8Q1EJdfQ.ar.vtt 2.56 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/neww.png 2.56 KB
    Part 06-Module 01-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.pt-BR.vtt 2.56 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/19. Jacobian Matrix-FeE5cRlMZqU.en.vtt 2.56 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick-3Xw6FKYP7e4.ja.vtt 2.56 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-K8g3Hss8Q1A.zh-CN.vtt 2.55 KB
    Part 06-Module 01-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.en-US.vtt 2.55 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-pH51jLfGXe0.ar.vtt 2.55 KB
    Part 06-Module 01-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.en.vtt 2.54 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/04. Build Robots with ROS-7eaz0qW7y_I.zh-CN.vtt 2.54 KB
    Part 01-Module 04-Lesson 10_The End/01. CarND Term 1 Outro-5Apiqg20W8M.zh-CN.vtt 2.54 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt 2.54 KB
    Part 03-Module 01-Lesson 01_Welcome/01. CarND Term 3 Intro-v4pRPMIudM0.zh-CN.vtt 2.54 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt 2.54 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.es-MX.vtt 2.54 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/22. SVM Gamma Parameter-m2a2K4lprQw.zh-CN.vtt 2.54 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt 2.53 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt 2.53 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.en.vtt 2.53 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/20. 16 L SchedulingComputeTime-N6AlIUczqRM.en.vtt 2.53 KB
    Part 02-Module 03-Lesson 03_Markov Localization/03. ND013 M4 L3 02 L Localization Posterior-WCva9DtGgGA.en.vtt 2.52 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.ja.vtt 2.52 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/01. L1 01 L Introduction To Module-cHadgZtuDZA.zh-CN.vtt 2.52 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52 KB
    Part 06-Module 01-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.en-US.vtt 2.52 KB
    Part 06-Module 01-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.en.vtt 2.52 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/02. Clarifying the Question-XvvKBmKC_84.en-US.vtt 2.52 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/08. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/02. Clarifying the Question-XvvKBmKC_84.en.vtt 2.51 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/34. 32 L Parameter Hyperspace!-5a3-iIhdguc.pt-BR.vtt 2.51 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.it.vtt 2.51 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/01. Interview Introduction-dRsHYt1Lddc.en-US.vtt 2.5 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/01. Interview Introduction-dRsHYt1Lddc.en.vtt 2.5 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/21. Cross Entropy-tRsSi_sqXjI.zh-CN.vtt 2.5 KB
    Part 01-Module 01-Lesson 01_Welcome/01. Welcome-jHA__A61nqc.en.vtt 2.5 KB
    Part 06-Module 01-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.pt-BR.vtt 2.5 KB
    Part 03-Module 05-Lesson 05_System Integration Project/02. L5 01 L Project Introduction-UT34zkxfS_M.zh-CN.vtt 2.49 KB
    Part 06-Module 01-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.pt-BR.vtt 2.49 KB
    Part 03-Module 02-Lesson 01_Search/04. Motion Planning-KHAu5A_flcQ.zh-CN.vtt 2.49 KB
    Part 06-Module 01-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.en-US.vtt 2.49 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.pt-BR.vtt 2.48 KB
    Part 03-Module 03-Lesson 04_Inference Performance/07. Fusion-JOksFH3vQgk.en.vtt 2.48 KB
    Part 06-Module 01-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.en.vtt 2.48 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/34. Outro-G3soGuQeHGU.zh-CN.vtt 2.48 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/04. Solving Problems - Big And Small-WHcRQMGSbqg.en.vtt 2.47 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data-x2dmBUEKQIA.pt-BR.vtt 2.47 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/07. L3 09 L HARA Identification Of Hazards-LXp7ScZaKp4.en.vtt 2.47 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/12. 09 - Data Augmentation-2oaB2_DhmF8.en.vtt 2.46 KB
    Part 06-Module 01-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.en-US.vtt 2.46 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.ja.vtt 2.46 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/04. CTRV-o2HVZFSH1Fs.en.vtt 2.46 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/20. Kalman Filter Land-LXJ5jrvDuEk.zh-CN.vtt 2.46 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-UAdcKWLi9G8.ja.vtt 2.46 KB
    Part 06-Module 01-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.en.vtt 2.46 KB
    Part 02-Module 03-Lesson 02_Localization Overview/34. Theorem of Total Probability-byZ-BzbQA5M.zh-CN.vtt 2.45 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.en.vtt 2.45 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/02. L1 01 L Lesson Introduction--5dEvxYljG8.en.vtt 2.45 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/13. Training Your Logistic Classifier-WQsdr1EJgz8.en.vtt 2.45 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/17. Training and Testing Data-x2dmBUEKQIA.zh-CN.vtt 2.45 KB
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/09. Notation Continued-ZeGnkrKZWBQ.zh-CN.vtt 2.45 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.es-MX.vtt 2.44 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/10. L6 15 Freedom From Interference Temporal-ChGZCPXko7M.en.vtt 2.44 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.en.vtt 2.44 KB
    Part 01-Module 04-Lesson 08_Object Detection/39. Summary of Vehicle Detection and Tracking-3ceKmVDQfFQ.en.vtt 2.44 KB
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2-rmWL_3r8MKo.zh-CN.vtt 2.44 KB
    Part 01-Module 04-Lesson 07_Decision Trees/34. DT Strengths and Weaknesses-KGnhg76iRfI.zh-CN.vtt 2.44 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/07. 06 L A- Reminder Solution-HtQjw7qr2-o.en.vtt 2.44 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/05. L2 08 L Development Interface Agreement-xF79RP2LduY.en.vtt 2.44 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/20. 16 L SchedulingComputeTime-N6AlIUczqRM.zh-CN.vtt 2.44 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/08. L6 11-12 Software Safety Robustness And Quality-RQEnvtti3sM.zh-CN.vtt 2.43 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/19. Empirics-VT8RENbE9Ck.en.vtt 2.43 KB
    Part 02-Module 04-Lesson 01_PID Control/04. Implement P Controller - Artificial Intelligence for Robotics-OrJgrTc5d04.zh-CN.vtt 2.43 KB
    Part 03-Module 03-Lesson 04_Inference Performance/09. Reducing Precision-bZPG5I_igR8.en.vtt 2.42 KB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-YwAyqkznxa0.ru.vtt 2.42 KB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.ja.vtt 2.42 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-d8UrbKKlGxI.es-ES.vtt 2.42 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/13. Training Your Logistic Classifier-WQsdr1EJgz8.pt-BR.vtt 2.41 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/04. Statistical Invariance-0Hr5YwUUhr0.en.vtt 2.41 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/04. Linear Models Are Limited-12AYOYDrpfQ.pt-BR.vtt 2.4 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt 2.4 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt 2.4 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/06. Resume Review-L3F2BFGYMtI.zh-CN.vtt 2.4 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.pt-BR.vtt 2.4 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn-olGPVtH7KGU.ja.vtt 2.4 KB
    Part 06-Module 01-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.pt-BR.vtt 2.4 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/33. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.pt-BR.vtt 2.39 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/10. SVM in SKlearn-R7xQtQzkvTk.zh-CN.vtt 2.39 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/02. Tracking Intro-BkjQzEyJWrE.zh-CN.vtt 2.39 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8xFV-I4VqZ0.ar.vtt 2.38 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/14. Solving Trig Problems Part1-qI4i845d7Qg.en.vtt 2.38 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/11. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38 KB
    Part 06-Module 01-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.en-US.vtt 2.37 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/19. Jacobian Matrix-FeE5cRlMZqU.zh-CN.vtt 2.37 KB
    Part 06-Module 01-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.pt-BR.vtt 2.37 KB
    Part 06-Module 01-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.en.vtt 2.37 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/08. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/04. Solving Problems - Big And Small-WHcRQMGSbqg.pt-BR.vtt 2.37 KB
    Part 01-Module 01-Lesson 01_Welcome/01. Welcome-jHA__A61nqc.zh-CN.vtt 2.36 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/02. Bryan Catanzaro-CLIF_6QwlFo.en.vtt 2.36 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/07. 06 L A- Reminder Solution-HtQjw7qr2-o.zh-CN.vtt 2.36 KB
    Part 02-Module 03-Lesson 03_Markov Localization/16. Explain Law Of Total Probability And Markov Assumption-9hGU7s5m8c0.en.vtt 2.36 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/05. L2 08 L Development Interface Agreement-xF79RP2LduY.zh-CN.vtt 2.36 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/33. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.en.vtt 2.36 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt 2.36 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt 2.36 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.en.vtt 2.36 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/03. Gaussian Intro-6IhtnM1e0IY.en.vtt 2.36 KB
    Part 01-Module 04-Lesson 08_Object Detection/24. Labeled Data-H_i1ctez_Qw.en.vtt 2.36 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.en-US.vtt 2.35 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.en.vtt 2.35 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-d8UrbKKlGxI.ja.vtt 2.35 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/04. Knapsack Problem--xRKazHGtjU.zh-CN.vtt 2.35 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses-U9-ZsbaaGAs.ja.vtt 2.35 KB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.pt-BR.vtt 2.35 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/28. UKF Update-pJ5XauGNclI.en.vtt 2.34 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-SXSafquSoW8.zh-CN.vtt 2.34 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt 2.34 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt 2.34 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/02. Effective Resume Components-AiFcaHRGdEA.zh-CN.vtt 2.34 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-7kllZxX-Nso.ru.vtt 2.34 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/04. L5 09 Technical Safety Requirement Attributes-EOYTl2e8wEs.zh-CN.vtt 2.33 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-MMDcirk9QPM.ru.vtt 2.33 KB
    Part 06-Module 01-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.pt-BR.vtt 2.33 KB
    Part 02-Module 03-Lesson 05_Particle Filters/07. Using Robot Class-1hgVZtRIjFU.zh-CN.vtt 2.33 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-d8UrbKKlGxI.en.vtt 2.33 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick-3Xw6FKYP7e4.pt-BR.vtt 2.33 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/08. ROS Services-EXYmvpcOnCc.en.vtt 2.32 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/12. 09 - Data Augmentation-2oaB2_DhmF8.zh-CN.vtt 2.32 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/09. L4 18 Warning And Degradation Concept-khNhy3IwKa0.en.vtt 2.32 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/06. L5 Sebastian-30Ei-TLjYsk.zh-CN.vtt 2.32 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/02. Module Introduction-uyLRFMI4HkA.zh-CN.vtt 2.32 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.en.vtt 2.32 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt 2.31 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt 2.31 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.en.vtt 2.31 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/03. LeNet Data-eCP8o1BnhRA.en.vtt 2.31 KB
    Part 02-Module 03-Lesson 03_Markov Localization/15. Explain Bayes Rule And Apply Law Of Total Probability-p2qfHa9G7_k.zh-CN.vtt 2.31 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/19. Dropout-6DcImJS8uV8.zh-CN.vtt 2.31 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/06. L4 10 Function Safety Requirements And ASIL Inheritance-oeKSXaP7Lxg.en.vtt 2.31 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.es-ES.vtt 2.3 KB
    Part 06-Module 01-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.en-US.vtt 2.3 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.3 KB
    Part 06-Module 01-Lesson 05_Trees/12. BSTs-abRNGLhGUmE.zh-CN.vtt 2.3 KB
    Part 06-Module 01-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.en.vtt 2.3 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/34. 32 L Parameter Hyperspace!-5a3-iIhdguc.en.vtt 2.3 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/03. L9 03 L GPUs-8eP2EpfBli0.zh-CN.vtt 2.3 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.3 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.en-US.vtt 2.3 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/03. LeNet Data-eCP8o1BnhRA.zh-CN.vtt 2.3 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/06. ND013 M3 L4 05 L Kalman Filter Equations In C++-ZG8Ya-mCGhI.en.vtt 2.29 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.en.vtt 2.29 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basics Unscented Transformation-8jbckHQDl4A.zh-CN.vtt 2.29 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 HARA Risk Assessment, Severity, Exposure, Controllability-44NYK53gOAM.zh-CN.vtt 2.29 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28 KB
    Part 06-Module 01-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.pt-BR.vtt 2.28 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 HARA Risk Assessment, Severity, Exposure, Controllability-44NYK53gOAM.en.vtt 2.28 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/07. L3 09 L HARA Identification Of Hazards-LXp7ScZaKp4.zh-CN.vtt 2.28 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.ar.vtt 2.28 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/02. Job Search Mindset-cBk7bno3KS0.zh-CN.vtt 2.28 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/01. Introduction-Vnj2VNQROtI.ar.vtt 2.28 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/05. 04 L Finite State Machine-NERRPjU08NU.en.vtt 2.28 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.pt-BR.vtt 2.27 KB
    Part 06-Module 01-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.en-US.vtt 2.27 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn-olGPVtH7KGU.en.vtt 2.27 KB
    Part 01-Module 04-Lesson 08_Object Detection/24. Labeled Data-H_i1ctez_Qw.zh-CN.vtt 2.27 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn-olGPVtH7KGU.pt-BR.vtt 2.27 KB
    Part 06-Module 01-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.en.vtt 2.27 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy--gJJmckPBAg.en.vtt 2.27 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.pt-BR.vtt 2.27 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/newx-1n.png 2.27 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.ja.vtt 2.27 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/codecogseqn-2.png 2.26 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature-sAdM20gFi2M.ar.vtt 2.26 KB
    Part 06-Module 01-Lesson 05_Trees/03. Tree Terminology-mPUsDUR_sj8.zh-CN.vtt 2.26 KB
    Part 02-Module 04-Lesson 01_PID Control/11. PID Implementation - Artificial Intelligence for Robotics-Ag8H3Iit9j4.ja.vtt 2.26 KB
    Part 01-Module 04-Lesson 08_Object Detection/21. Combining Features-5tQx6J-VzsI.en.vtt 2.25 KB
    Part 01-Module 04-Lesson 08_Object Detection/39. Summary of Vehicle Detection and Tracking-3ceKmVDQfFQ.zh-CN.vtt 2.25 KB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.en.vtt 2.25 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.es-MX.vtt 2.24 KB
    Part 06-Module 01-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.pt-BR.vtt 2.24 KB
    Part 06-Module 01-Lesson 06_Graphs/03. Directions and Cycles-lF0vUktQDPo.zh-CN.vtt 2.24 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/04. Statistical Invariance-0Hr5YwUUhr0.pt-BR.vtt 2.24 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.it.vtt 2.24 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/06. L5 Sebastian-30Ei-TLjYsk.en.vtt 2.24 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/23. Evaluating The Performance-1HieeV8IUv8.zh-CN.vtt 2.23 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/23. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23 KB
    Part 06-Module 01-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.zh-CN.vtt 2.23 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick-3Xw6FKYP7e4.en.vtt 2.23 KB
    Part 06-Module 01-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.en.vtt 2.23 KB
    Part 06-Module 01-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.en-US.vtt 2.23 KB
    Part 02-Module 03-Lesson 03_Markov Localization/03. ND013 M4 L3 02 L Localization Posterior-WCva9DtGgGA.zh-CN.vtt 2.23 KB
    Part 06-Module 01-Lesson 06_Graphs/06. Graph Representations-uw9u6dtl0WA.zh-CN.vtt 2.22 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.pt-PT.vtt 2.22 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.en-US.vtt 2.22 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/04. Solving Problems - Big And Small-WHcRQMGSbqg.zh-CN.vtt 2.22 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.pt.vtt 2.22 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.en.vtt 2.22 KB
    Part 01-Module 04-Lesson 08_Object Detection/26. Train a Classifier-EBEN6KLQm8A.zh-CN.vtt 2.22 KB
    Part 04-Module 01-Lesson 01_Conduct a Job Search/01. Introduction-axcFtHK6If4.zh-CN.vtt 2.22 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.pt-BR.vtt 2.22 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-CvTXyvw7QLc.ja.vtt 2.21 KB
    Part 02-Module 04-Lesson 01_PID Control/11. PID Implementation - Artificial Intelligence for Robotics-Ag8H3Iit9j4.en.vtt 2.21 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/01. Intro-HbPxeJ3onmI.en.vtt 2.21 KB
    Part 06-Module 01-Lesson 05_Trees/05. Tree Traversal-KZOdmzypynw.zh-CN.vtt 2.2 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.pt-BR.vtt 2.2 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-3xBycKfnCOQ.es-ES.vtt 2.19 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/14. Sourcing The ROS Environment-6cHlu-KVi98.en.vtt 2.19 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy--gJJmckPBAg.ja.vtt 2.19 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/02. Why Fully Convolutional Networks (FCNs) -WQ_YOz1o9GM.en.vtt 2.19 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/02. L1 01 L Lesson Introduction--5dEvxYljG8.zh-CN.vtt 2.19 KB
    Part 06-Module 01-Lesson 05_Trees/17. Heap Implementation-2LAdml6_pDY.zh-CN.vtt 2.19 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.ar.vtt 2.19 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses-U9-ZsbaaGAs.pt-BR.vtt 2.19 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/02. Bryan Catanzaro-CLIF_6QwlFo.zh-CN.vtt 2.19 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/19. Empirics-VT8RENbE9Ck.zh-CN.vtt 2.18 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.en.vtt 2.18 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-3kOrzhYCXz8.en.vtt 2.18 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/21.png 2.18 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.en.vtt 2.17 KB
    Part 06-Module 01-Lesson 05_Trees/20. Tree Rotations-O5Yl-m0YbVA.zh-CN.vtt 2.17 KB
    Part 03-Module 03-Lesson 04_Inference Performance/07. Fusion-JOksFH3vQgk.zh-CN.vtt 2.17 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt 2.17 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt 2.17 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.pt-BR.vtt 2.17 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/14. Participating in open source projects 2-elZCLxVvJrY.ar.vtt 2.16 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.en.vtt 2.16 KB
    Part 02-Module 04-Lesson 01_PID Control/12. PID Implementation Solution - Artificial Intelligence for Robotics-dgZnqCfyCoA.ja.vtt 2.16 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/06. L4 10 Function Safety Requirements And ASIL Inheritance-oeKSXaP7Lxg.zh-CN.vtt 2.16 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. Canny Edge Detection-Av2GsgQWX8I.en.vtt 2.15 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/04. CTRV-o2HVZFSH1Fs.zh-CN.vtt 2.15 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/03. ND013 01 L Intro To Neural Networks-UIycORUrPww.en.vtt 2.15 KB
    Part 06-Module 01-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.pt-BR.vtt 2.15 KB
    Part 02-Module 04-Lesson 01_PID Control/11. PID Implementation - Artificial Intelligence for Robotics-Ag8H3Iit9j4.es-ES.vtt 2.14 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/01. Model Predictive Control Intro-6z8A-1kNdz8.en.vtt 2.14 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/11. L6 17 Freedom From Interference Temporal Part 2-wRbGk0SwWNQ.en.vtt 2.14 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.en.vtt 2.14 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8xFV-I4VqZ0.ja.vtt 2.14 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-CxAxRCv9WoA.ar.vtt 2.14 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.pt-BR.vtt 2.13 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/04. Linear Models Are Limited-12AYOYDrpfQ.en.vtt 2.13 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/06. L6 09 Software Safety Requirments Architecture Testing And Intergration-OJMGRtJciNI.zh-CN.vtt 2.13 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.pt-BR.vtt 2.13 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid - Artificial Intelligence for Robotics-1l7bWfz8sJw.en.vtt 2.13 KB
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-C3f-T9_GTpw.zh-CN.vtt 2.12 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/10. L6 15 Freedom From Interference Temporal-ChGZCPXko7M.zh-CN.vtt 2.12 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/13. Training Your Logistic Classifier-WQsdr1EJgz8.zh-CN.vtt 2.12 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/04. Statistical Invariance-0Hr5YwUUhr0.zh-CN.vtt 2.12 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/01. Interview Introduction-dRsHYt1Lddc.zh-CN.vtt 2.12 KB
    Part 03-Module 03-Lesson 04_Inference Performance/09. Reducing Precision-bZPG5I_igR8.zh-CN.vtt 2.11 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.zh-CN.vtt 2.11 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/05. Deep Learning History-AWWLT4QxKaM.en.vtt 2.11 KB
    Part 02-Module 03-Lesson 04_Motion Models/09. Odometry Errors Solution-FS_5mHoszx8.en.vtt 2.11 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.ja.vtt 2.11 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/04. Adding a Package-UJlCdokCJJ0.en.vtt 2.11 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/02. Localization Introduction-lwmXQ-kxU3s.en.vtt 2.11 KB
    Part 06-Module 01-Lesson 05_Trees/18. Self-Balancing Trees-EHI548K3jiw.zh-CN.vtt 2.1 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt 2.1 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt 2.1 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.es-MX.vtt 2.1 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt 2.1 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt 2.1 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.zh-CN.vtt 2.1 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/34. 32 L Parameter Hyperspace!-5a3-iIhdguc.zh-CN.vtt 2.1 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-3xBycKfnCOQ.en.vtt 2.1 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses-U9-ZsbaaGAs.en.vtt 2.09 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif 2.09 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif 2.09 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/09. L4 18 Warning And Degradation Concept-khNhy3IwKa0.zh-CN.vtt 2.09 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/04. Linear Models Are Limited-12AYOYDrpfQ.zh-CN.vtt 2.08 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/33. 31 L Momentum And Learning Rate Decay-O3QYdmQjXds.zh-CN.vtt 2.08 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt 2.08 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt 2.08 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/01. Convey Your Skills Concisely-xnQr3ohml9s.zh-CN.vtt 2.08 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/08. ROS Services-EXYmvpcOnCc.zh-CN.vtt 2.08 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.ar.vtt 2.08 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-HTL5-0DDqE4.es-ES.vtt 2.08 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid - Artificial Intelligence for Robotics-1l7bWfz8sJw.ja.vtt 2.08 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.ja.vtt 2.08 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-Exl_kCyUc8U.ru.vtt 2.08 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-2ieszOqnpWs.ar.vtt 2.07 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.en.vtt 2.07 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/09. Interview with Art - Part 2-Vvzl2J5K7-Y.zh-CN.vtt 2.07 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/09. State Prediction-_A0NRvmgo3w.en.vtt 2.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-pH51jLfGXe0.ja.vtt 2.07 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/13. Training a Deep Learning Network-CsB7yUtMJyk.en.vtt 2.07 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/03. Good GitHub repository-qBi8Q1EJdfQ.pt-BR.vtt 2.07 KB
    Part 06-Module 01-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.zh-CN.vtt 2.06 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/09. L3 18 L HARA ASIL Levels-l7vx-w06fZw.en.vtt 2.06 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/09. L3 18 L HARA ASIL Levels-l7vx-w06fZw.zh-CN.vtt 2.06 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.en.vtt 2.06 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/02. Clarifying the Question-XvvKBmKC_84.zh-CN.vtt 2.06 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.en-US.vtt 2.06 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/06. Quick Fixes-Lb9e2KemR6I.pt-BR.vtt 2.06 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/05. 02 - Data Collection-kTJiHXJe_t4.en.vtt 2.06 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.en.vtt 2.06 KB
    Part 06-Module 01-Lesson 06_Graphs/11. BFS-pol4kGNlvJA.zh-CN.vtt 2.05 KB
    Part 03-Module 02-Lesson 01_Search/02. 01 L Intro Group-f7lpxAQDxVI.en.vtt 2.05 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/13. Training a Deep Learning Network-CsB7yUtMJyk.pt-BR.vtt 2.05 KB
    Part 02-Module 03-Lesson 03_Markov Localization/16. Explain Law Of Total Probability And Markov Assumption-9hGU7s5m8c0.zh-CN.vtt 2.05 KB
    Part 03-Module 02-Lesson 03_Behavior Planning/05. 04 L Finite State Machine-NERRPjU08NU.zh-CN.vtt 2.04 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.pt-BR.vtt 2.04 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.ar.vtt 2.04 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/02. Sets and Maps-gmIb-qZhTDQ.zh-CN.vtt 2.04 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/05. IoU---9BTjOsO6U.en.vtt 2.04 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/03. Gaussian Intro-6IhtnM1e0IY.zh-CN.vtt 2.04 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/33. UKF Story Time-gFdT8W1fmf8.en.vtt 2.04 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/23. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/05. Deep Learning History-AWWLT4QxKaM.zh-CN.vtt 2.03 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.ja.vtt 2.03 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/07. Message Passing-IpNp13F-TgQ.en.vtt 2.03 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/28. UKF Update-pJ5XauGNclI.zh-CN.vtt 2.03 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/23. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-CvTXyvw7QLc.en.vtt 2.02 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/b-1byk.png 2.02 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/03. L4 03 Functional Safety Requirements-9z5YqMYH7mY.en.vtt 2.02 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/02. Clarifying the Question-XvvKBmKC_84.pt-BR.vtt 2.02 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-d8UrbKKlGxI.zh-CN.vtt 2.02 KB
    Part 02-Module 04-Lesson 01_PID Control/09. Systematic Bias - Artificial Intelligence for Robotics-1wxFEcqq3_c.ru.vtt 2.02 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-RXpuBRA-cpo.ja.vtt 2.01 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/01. Interview Introduction-dRsHYt1Lddc.pt-BR.vtt 2.01 KB
    Part 01-Module 04-Lesson 08_Object Detection/21. Combining Features-5tQx6J-VzsI.zh-CN.vtt 2.01 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/06. ND013 M3 L4 05 L Kalman Filter Equations In C++-ZG8Ya-mCGhI.zh-CN.vtt 2.01 KB
    Part 02-Module 03-Lesson 03_Markov Localization/32. Finalize The Bayes Localization Filter-teVw2J-_6ZE.en.vtt 2.01 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/02. L5 03 Deriving Techincal Safety Requirements From Functional Safety Requirements-fVLsG83a-So.en.vtt 2.01 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/24. SVM Strengths and Weaknesses-U9-ZsbaaGAs.zh-CN.vtt 2.01 KB
    Part 06-Module 01-Lesson 03_Searching and Sorting/01. Binary Search-0VN5iwEyq4c.pt-BR.vtt 2.01 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-CvTXyvw7QLc.pt-BR.vtt 2 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.pt-BR.vtt 2 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid - Artificial Intelligence for Robotics-1l7bWfz8sJw.zh-CN.vtt 2 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/02. Introduction And Overview-G57ZvTBAUL8.en.vtt 2 KB
    Part 06-Module 01-Lesson 05_Trees/08. Search and Delete-KbL-HK3ztX8.pt-BR.vtt 2 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.en.vtt 1.99 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/09. Stacks Details-HpaVHzDeZC4.zh-CN.vtt 1.99 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/04. L3 04 L Introduction To HARA-Qxui0XShsbE.en.vtt 1.99 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-3xBycKfnCOQ.ja.vtt 1.99 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.pt-PT.vtt 1.99 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/04. Lidar Strengths And Weaknesses-xpUduMU9-jo.en.vtt 1.99 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.es-MX.vtt 1.99 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/14. Sourcing The ROS Environment-6cHlu-KVi98.zh-CN.vtt 1.99 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/09. L6 13 Freedom From Interference Spatial-HraIGQSxsQ0.en.vtt 1.99 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.en-US.vtt 1.99 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.zh-CN.vtt 1.99 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.pt.vtt 1.99 KB
    Part 06-Module 01-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.en-US.vtt 1.99 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-8c479K2UCZo.ja.vtt 1.99 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.en.vtt 1.99 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.en.vtt 1.99 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8xFV-I4VqZ0.pt-BR.vtt 1.99 KB
    Part 06-Module 01-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.en.vtt 1.99 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.en-US.vtt 1.98 KB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.pt-BR.vtt 1.98 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt 1.98 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt 1.98 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.pt-BR.vtt 1.98 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/img/codecogseqn-20.gif 1.98 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.ar.vtt 1.98 KB
    Part 06-Module 01-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.pt-BR.vtt 1.98 KB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-dH6uzx78lBA.ja.vtt 1.98 KB
    Part 06-Module 01-Lesson 06_Graphs/07. Adjacency Matrices-FsFhoTALA1c.zh-CN.vtt 1.97 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/13. Getting Started With sklearn-olGPVtH7KGU.zh-CN.vtt 1.97 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.ar.vtt 1.97 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.zh-CN.vtt 1.97 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.pt-BR.vtt 1.97 KB
    Part 03-Module 02-Lesson 01_Search/02. 01 L Intro Group-f7lpxAQDxVI.zh-CN.vtt 1.97 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.zh-CN.vtt 1.97 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/13. Calculating Error-HiRrJYZr-0I.en.vtt 1.97 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/01. 04 Sensor Fusion A01 The Benefits Of Sensors-zHe-uogin5U.en.vtt 1.97 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/05. Architecture Refinement-SK85D4cvwXo.en.vtt 1.97 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-3kOrzhYCXz8.ja.vtt 1.97 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97 KB
    Part 01-Module 04-Lesson 07_Decision Trees/13. Data Impurity and Entropy-Bd15qhUrKCI.zh-CN.vtt 1.96 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/17. 16 L Frenet Reminder-u3TYp-hDojk.en.vtt 1.96 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/18. Kernel Trick-3Xw6FKYP7e4.zh-CN.vtt 1.96 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/10. Turtlesim Overview-GcAqAdMQXvM.en.vtt 1.96 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/09. 05 - Validating The Model-1UGOJGg-0dU.en.vtt 1.95 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/03. What Is Safety-o1mdbufGaq8.zh-CN.vtt 1.95 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt 1.95 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt 1.95 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/05. Resume Reflection-8Cj_tCp8mls.es-MX.vtt 1.95 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/02. Localization Introduction-lwmXQ-kxU3s.zh-CN.vtt 1.95 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/14. Solving Trig Problems Part1-qI4i845d7Qg.zh-CN.vtt 1.95 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-pH51jLfGXe0.pt-BR.vtt 1.95 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/05. 02 - Data Collection-kTJiHXJe_t4.zh-CN.vtt 1.94 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-MXXTeWLXliY.ar.vtt 1.94 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.ar.vtt 1.94 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-pH51jLfGXe0.en.vtt 1.94 KB
    Part 02-Module 03-Lesson 05_Particle Filters/23. Error-3kOrzhYCXz8.zh-CN.vtt 1.94 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.en.vtt 1.94 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/05. Elevator Pitch-0QtgTG49E9I.pt-BR.vtt 1.94 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/01. Intro-HbPxeJ3onmI.zh-CN.vtt 1.94 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/14. L6 20 System Architecture Safety Design Patterns-9q8WAW-g8jE.en.vtt 1.93 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/06. Imagenet-pcNxBs7OAzA.en.vtt 1.93 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/04. L3 04 L Introduction To HARA-Qxui0XShsbE.zh-CN.vtt 1.93 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/05. Linked Lists-zxkpZrozDUk.zh-CN.vtt 1.93 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/03. Good GitHub repository-qBi8Q1EJdfQ.en.vtt 1.92 KB
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-B_fHrMIzIgE.zh-CN.vtt 1.92 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-HTL5-0DDqE4.en.vtt 1.92 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8xFV-I4VqZ0.zh-CN.vtt 1.92 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8xFV-I4VqZ0.en.vtt 1.92 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/03. Good GitHub repository-qBi8Q1EJdfQ.zh-CN.vtt 1.92 KB
    Part 02-Module 04-Lesson 01_PID Control/02. PID Control - Artificial Intelligence for Robotics--8w0prceask.ja.vtt 1.92 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. Canny Edge Detection-Av2GsgQWX8I.zh-CN.vtt 1.92 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/33. UKF Story Time-gFdT8W1fmf8.zh-CN.vtt 1.92 KB
    Part 06-Module 01-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.en-US.vtt 1.91 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/02. ROS L3 Overview-LPbq_YwrzME.en.vtt 1.91 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs-6UgInp_gf1w.ar.vtt 1.91 KB
    Part 01-Module 04-Lesson 08_Object Detection/36. False Positives-rihCsPhUSPk.en.vtt 1.91 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/13. L6 18 Freedom From Interference Communication-J2T842SLPgs.en.vtt 1.91 KB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.en.vtt 1.91 KB
    Part 02-Module 04-Lesson 01_PID Control/12. PID Implementation Solution - Artificial Intelligence for Robotics-dgZnqCfyCoA.en.vtt 1.91 KB
    Part 06-Module 01-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.en.vtt 1.91 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/03. ND013 01 L Intro To Neural Networks-UIycORUrPww.zh-CN.vtt 1.91 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.en.vtt 1.91 KB
    Part 02-Module 04-Lesson 01_PID Control/11. PID Implementation - Artificial Intelligence for Robotics-Ag8H3Iit9j4.zh-CN.vtt 1.91 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/04. Adding a Package-UJlCdokCJJ0.zh-CN.vtt 1.9 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/05. Introduction To Identify Hazards-ZzgEw7WQgTs.en.vtt 1.9 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/02. Purpose-7F7cMCTcyhM.es-MX.vtt 1.9 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.es-ES.vtt 1.9 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.es.vtt 1.9 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/13. Training a Deep Learning Network-CsB7yUtMJyk.zh-CN.vtt 1.9 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/29. 1x1 Convolutions-Zmzgerm6SjA.pt-BR.vtt 1.89 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/02. Why Fully Convolutional Networks (FCNs) -WQ_YOz1o9GM.zh-CN.vtt 1.89 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.pt-BR.vtt 1.89 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.ja.vtt 1.89 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-HTL5-0DDqE4.ja.vtt 1.89 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/06. Quick Fixes-Lb9e2KemR6I.en.vtt 1.89 KB
    Part 02-Module 03-Lesson 04_Motion Models/03. Motion Models-B2bXg8LaeF0.en.vtt 1.89 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/05. What Is MATLAB SelfDriving-6J3Ho1ZrHm0.en.vtt 1.89 KB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.ja.vtt 1.89 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-CxAxRCv9WoA.ja.vtt 1.88 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.it.vtt 1.88 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-doyrdLJ6rJ4.es-ES.vtt 1.88 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/13. Lane Curvature-2UQ22uRybuU.en.vtt 1.88 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.pt-BR.vtt 1.88 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.pt-BR.vtt 1.88 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.pt-BR.vtt 1.87 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/09. 05 - Validating The Model-1UGOJGg-0dU.zh-CN.vtt 1.87 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/06. Quick Fixes-Lb9e2KemR6I.zh-CN.vtt 1.87 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.en.vtt 1.87 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/18. Kalman Filter Code-3xBycKfnCOQ.zh-CN.vtt 1.86 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy--gJJmckPBAg.zh-CN.vtt 1.86 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy--gJJmckPBAg.pt-BR.vtt 1.86 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt 1.86 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt 1.86 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.pt-BR.vtt 1.86 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-8c479K2UCZo.es-ES.vtt 1.85 KB
    Part 02-Module 03-Lesson 04_Motion Models/09. Odometry Errors Solution-FS_5mHoszx8.zh-CN.vtt 1.85 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/06. Imagenet-pcNxBs7OAzA.zh-CN.vtt 1.85 KB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-dH6uzx78lBA.en.vtt 1.85 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/03. Overview-yN7u0qmJDhA.en.vtt 1.85 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro-pECnr-5F3_Q.ja-JP.vtt 1.84 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.es-ES.vtt 1.84 KB
    Part 02-Module 04-Lesson 01_PID Control/02. PID Control - Artificial Intelligence for Robotics--8w0prceask.en.vtt 1.84 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.zh-CN.vtt 1.84 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.en-US.vtt 1.84 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/09. State Prediction-_A0NRvmgo3w.zh-CN.vtt 1.84 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/07. Format-Xlqoq-SoJso.es-MX.vtt 1.84 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.en.vtt 1.84 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/16. Turtlesim Comms List Active Nodes-J_5JTUi7sQQ.en.vtt 1.83 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/07. Message Passing-IpNp13F-TgQ.zh-CN.vtt 1.83 KB
    Part 02-Module 03-Lesson 03_Markov Localization/33. Bayes Filter Theory Summary-lMyu2-PZGuk.en.vtt 1.83 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/03. What Is Safety-o1mdbufGaq8.en.vtt 1.83 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/02. Behavioral Cloning Project-YXs-IwG9ISg.en.vtt 1.83 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/17. 16 L Frenet Reminder-u3TYp-hDojk.zh-CN.vtt 1.83 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/10. Turtlesim Overview-GcAqAdMQXvM.zh-CN.vtt 1.83 KB
    Part 06-Module 01-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.en-US.vtt 1.82 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.ja.vtt 1.82 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-RXpuBRA-cpo.en.vtt 1.82 KB
    Part 06-Module 01-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.en.vtt 1.82 KB
    Part 02-Module 03-Lesson 04_Motion Models/04. Yaw Rate Velocity-tS7BYlCo3nU.en.vtt 1.82 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/36. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/05. Introduction To Identify Hazards-ZzgEw7WQgTs.zh-CN.vtt 1.82 KB
    Part 01-Module 04-Lesson 07_Decision Trees/08. Coding A Decision Tree-cxV6OAxCfIQ.zh-CN.vtt 1.82 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/04. What Is Functional Safety-NeUXHSv5qz8.en.vtt 1.81 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-doyrdLJ6rJ4.ja.vtt 1.81 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/11. L6 17 Freedom From Interference Temporal Part 2-wRbGk0SwWNQ.zh-CN.vtt 1.81 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/03. L4 03 Functional Safety Requirements-9z5YqMYH7mY.zh-CN.vtt 1.81 KB
    Part 01-Module 04-Lesson 07_Decision Trees/33. Bias-Variance Dilemma-W5uUYnSHDhM.zh-CN.vtt 1.81 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/10. 06 - Data Preprocessing-Oc7cLOS03PE.en.vtt 1.81 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt 1.81 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt 1.81 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.es-MX.vtt 1.81 KB
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-UFcTLCttNRI.ja.vtt 1.8 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/19. Sigma Point Prediction-zeMy0dth3yI.en-US.vtt 1.8 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. sine Hough-XQf7FOhwOVk.zh-CN.vtt 1.8 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.es-ES.vtt 1.8 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/01. Introduction-mMT_3k1LvNU.en.vtt 1.8 KB
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/02. L5 03 Deriving Techincal Safety Requirements From Functional Safety Requirements-fVLsG83a-So.zh-CN.vtt 1.8 KB
    Part 06-Module 01-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.pt-BR.vtt 1.79 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/04. Introduction to Hashing-8yik3RlDFgM.zh-CN.vtt 1.79 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. sine Hough-XQf7FOhwOVk.en.vtt 1.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.pt-PT.vtt 1.79 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/01. Introduction-Vnj2VNQROtI.pt-BR.vtt 1.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.it.vtt 1.79 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/02. ROS L3 Overview-LPbq_YwrzME.zh-CN.vtt 1.79 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.pt.vtt 1.78 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/04. L2 06 L Safety Management Roles And Responsibilities-5fViXy7XF0w.en.vtt 1.78 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/10. UKF Process Chain-sU7ifLgxxas.en.vtt 1.78 KB
    Part 03-Module 02-Lesson 02_Prediction/13. 13 L Overview Of Hybrid Approaches-yCRvxI5wJS0.en.vtt 1.78 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/02. L2 03 L Safety Culture-hca5xarxPVM.en.vtt 1.78 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/02. L2 03 L Safety Culture-hca5xarxPVM.zh-CN.vtt 1.78 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/04. Lidar Strengths And Weaknesses-xpUduMU9-jo.zh-CN.vtt 1.77 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-HTL5-0DDqE4.zh-CN.vtt 1.77 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/18. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-CvTXyvw7QLc.zh-CN.vtt 1.76 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/01. Model Predictive Control Intro-6z8A-1kNdz8.zh-CN.vtt 1.76 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/02. Behavioral Cloning Project-YXs-IwG9ISg.zh-CN.vtt 1.76 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/04. Getting Started, Camera Calibration-0zlyx5nL8Uo.en.vtt 1.76 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.it.vtt 1.76 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-doyrdLJ6rJ4.en.vtt 1.76 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/13. Lane Curvature-2UQ22uRybuU.zh-CN.vtt 1.76 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/09. Classification Example-46PywnGa_cQ.en.vtt 1.76 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/09. L6 13 Freedom From Interference Spatial-HraIGQSxsQ0.zh-CN.vtt 1.76 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/05. IoU---9BTjOsO6U.zh-CN.vtt 1.76 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt 1.75 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt 1.75 KB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.ar.vtt 1.75 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.en.vtt 1.75 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/04. 01 - Running The Simulator-rKw8md-zVno.en.vtt 1.75 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.en.vtt 1.75 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/hidden-layer-weights.gif 1.75 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-8c479K2UCZo.en.vtt 1.75 KB
    Part 06-Module 01-Lesson 05_Trees/02. Tree Basics-oaxLPzaXRDc.zh-CN.vtt 1.75 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/26. 25 L How Polynomial Trajectory Generation Works-5ZzYOqYZZ3I.en.vtt 1.74 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.es-ES.vtt 1.74 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/04. What Is Functional Safety-NeUXHSv5qz8.zh-CN.vtt 1.74 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/05. What Is MATLAB SelfDriving-6J3Ho1ZrHm0.zh-CN.vtt 1.74 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/02. Introduction And Overview-G57ZvTBAUL8.zh-CN.vtt 1.74 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.zh-CN.vtt 1.74 KB
    Part 02-Module 04-Lesson 01_PID Control/12. PID Implementation Solution - Artificial Intelligence for Robotics-dgZnqCfyCoA.zh-CN.vtt 1.74 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.es.vtt 1.74 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-2ieszOqnpWs.pt-BR.vtt 1.74 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.ja.vtt 1.73 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.it.vtt 1.73 KB
    Part 06-Module 01-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.pt-BR.vtt 1.73 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/04. L2 06 L Safety Management Roles And Responsibilities-5fViXy7XF0w.zh-CN.vtt 1.72 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.zh-CN.vtt 1.72 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.pt-PT.vtt 1.72 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/13. Calculating Error-HiRrJYZr-0I.zh-CN.vtt 1.72 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-IMWsjjIeOrY.zh-CN.vtt 1.72 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.pt.vtt 1.72 KB
    Part 02-Module 03-Lesson 03_Markov Localization/32. Finalize The Bayes Localization Filter-teVw2J-_6ZE.zh-CN.vtt 1.72 KB
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-hcoKwWBvB6Y.ja.vtt 1.72 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/11. FCNs In The Wild-q9wTd53-hsw.en.vtt 1.72 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/05. L3 Sebastian-sGbjIAiDEUs.en.vtt 1.72 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/22. Sensor Fusion General Processing Flow-dcTY4vRg5vo.en.vtt 1.71 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/05. Architecture Refinement-SK85D4cvwXo.zh-CN.vtt 1.71 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/09. Compute Graph-dWc4ktFohNg.en.vtt 1.71 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.en.vtt 1.71 KB
    Part 03-Module 05-Lesson 05_System Integration Project/01. 08 System Integration A02 Have Fun!-Wx3tVLt74b8.en.vtt 1.71 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/img/legend.png 1.71 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.it.vtt 1.71 KB
    Part 03-Module 02-Lesson 01_Search/20. Value Program-RXpuBRA-cpo.zh-CN.vtt 1.71 KB
    Part 04-Module 02-Lesson 02_Refine Your Career Change Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt 1.71 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.en.vtt 1.71 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/38. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.71 KB
    Part 03-Module 02-Lesson 01_Search/01. 06 Path Planning A01 Motion Planning-JlBs1RxKvHE.en.vtt 1.71 KB
    Part 04-Module 02-Lesson 03_Refine Your Prior Industry Experience Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt 1.71 KB
    Part 04-Module 02-Lesson 01_Refine Your Entry-Level Resume/04. Describe Your Work Experiences-B1LED4txinI.zh-CN.vtt 1.71 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-CxAxRCv9WoA.pt-BR.vtt 1.7 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/07. LeNet Model Training-9580p7ZRQVY.en.vtt 1.7 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-2ieszOqnpWs.ja.vtt 1.7 KB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-dH6uzx78lBA.zh-CN.vtt 1.7 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.pt-PT.vtt 1.7 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/05. L3 Sebastian-sGbjIAiDEUs.zh-CN.vtt 1.69 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/01. Introduction-mMT_3k1LvNU.zh-CN.vtt 1.69 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/14. Participating in open source projects 2-elZCLxVvJrY.pt-BR.vtt 1.69 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.pt.vtt 1.69 KB
    Part 01-Module 04-Lesson 08_Object Detection/11. Color Histogram Features-8ZvNANafMU8.en.vtt 1.69 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.en-US.vtt 1.69 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/02. lane line intro-aIkAcXVxf2w.en.vtt 1.69 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.en.vtt 1.69 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/37. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/29. 1x1 Convolutions-Zmzgerm6SjA.en.vtt 1.69 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/10. 06 - Data Preprocessing-Oc7cLOS03PE.zh-CN.vtt 1.69 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/02. L1 02 L Introduction To Lesson-jinuK2-qPh4.en.vtt 1.68 KB
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-o75xNa_jwvg.zh-CN.vtt 1.68 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.ja.vtt 1.68 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.pt-PT.vtt 1.68 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/18. Turtlesim Comms Get Info-Y6rMQreuOL4.en.vtt 1.67 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/01. Kalman Filter Introduction-2zmbIjHpkRM.en.vtt 1.67 KB
    Part 02-Module 03-Lesson 04_Motion Models/03. Motion Models-B2bXg8LaeF0.zh-CN.vtt 1.67 KB
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-hcoKwWBvB6Y.en.vtt 1.67 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.pt.vtt 1.67 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/12.png 1.67 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-7kllZxX-Nso.ja.vtt 1.67 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.es-MX.vtt 1.67 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/03. Pseudocode-JNm1fnWj5To.en.vtt 1.66 KB
    Part 01-Module 04-Lesson 08_Object Detection/17. Gradient Features-cvGtDBu8ONQ.en.vtt 1.66 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.ja.vtt 1.66 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-doyrdLJ6rJ4.zh-CN.vtt 1.66 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/16. Turtlesim Comms List Active Nodes-J_5JTUi7sQQ.zh-CN.vtt 1.66 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-CxAxRCv9WoA.en.vtt 1.66 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs-6UgInp_gf1w.ja.vtt 1.66 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.en-US.vtt 1.66 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. canny and gradient-LQM--KPJjD0.en.vtt 1.66 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/01. 08 System Integration A01 Putting Everything Together-gxGk4undFEM.en.vtt 1.66 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.en.vtt 1.66 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/26. 25 L How Polynomial Trajectory Generation Works-5ZzYOqYZZ3I.zh-CN.vtt 1.66 KB
    Part 02-Module 04-Lesson 01_PID Control/02. PID Control - Artificial Intelligence for Robotics--8w0prceask.zh-CN.vtt 1.65 KB
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain-KYieR9y-ue4.ar.vtt 1.65 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-SZ6Jg1wS604.zh-CN.vtt 1.65 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/17. Turtlesim Comms Topics-46YAnfvhTMc.en.vtt 1.65 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/38. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.65 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Chain Rule-YAhIBOnbt54.en.vtt 1.65 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/09. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.es-ES.vtt 1.64 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/02. Introduction To Deep Learning-7xRwuECaXBs.en.vtt 1.64 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.es-ES.vtt 1.64 KB
    Part 01-Module 04-Lesson 08_Object Detection/01. Intro to Vehicle Tracking-BAe-zslg088.en.vtt 1.64 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.es.vtt 1.64 KB
    Part 02-Module 03-Lesson 03_Markov Localization/33. Bayes Filter Theory Summary-lMyu2-PZGuk.zh-CN.vtt 1.64 KB
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-dBA94pR6JYw.ru.vtt 1.64 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-8c479K2UCZo.zh-CN.vtt 1.64 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/16. 15 L EnvironmentClassification-4NOvHff7WFQ.en.vtt 1.64 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/03. Overview-yN7u0qmJDhA.zh-CN.vtt 1.63 KB
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-7T1Rr7KLgdM.zh-CN.vtt 1.63 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.pt-BR.vtt 1.62 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-pH51jLfGXe0.zh-CN.vtt 1.62 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-2ieszOqnpWs.en.vtt 1.62 KB
    Part 01-Module 04-Lesson 08_Object Detection/36. False Positives-rihCsPhUSPk.zh-CN.vtt 1.62 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/01. Introduction-Vnj2VNQROtI.zh-CN.vtt 1.62 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-z-cX1kYbC1w.ar.vtt 1.62 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/02. Lists-KUQSgUMtyv0.zh-CN.vtt 1.61 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/14. L6 20 System Architecture Safety Design Patterns-9q8WAW-g8jE.zh-CN.vtt 1.61 KB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-YwAyqkznxa0.ja.vtt 1.61 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature-sAdM20gFi2M.pt-BR.vtt 1.61 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.en.vtt 1.61 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/02. Overview of Catkin Workspaces and Packages-VqYNipeW72o.en.vtt 1.61 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-eIjyrQpDogg.ja.vtt 1.6 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/09. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.6 KB
    Part 02-Module 03-Lesson 04_Motion Models/02. Lesson Introduction--bPE6USDH3A.en.vtt 1.6 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.ar.vtt 1.6 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.pt-BR.vtt 1.6 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/04. L6 06 Programming Languages-KpAhkXNan7Y.en.vtt 1.6 KB
    Part 06-Module 01-Lesson 05_Trees/16. Heapify-CAbDbiCfERY.zh-CN.vtt 1.6 KB
    Part 06-Module 01-Lesson 06_Graphs/04. Connectivity-4x6u2KtNDg4.zh-CN.vtt 1.59 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.en.vtt 1.59 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.ja.vtt 1.59 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature-sAdM20gFi2M.ja.vtt 1.59 KB
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-SFcHsK2SWrI.ja.vtt 1.59 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/01. 03 Deep Learning A01 Neural Network Intuition-UKEIHK5IifI.en.vtt 1.59 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/13. L6 18 Freedom From Interference Communication-J2T842SLPgs.zh-CN.vtt 1.58 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.pt-PT.vtt 1.58 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/11. FCNs In The Wild-q9wTd53-hsw.zh-CN.vtt 1.58 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.pt-BR.vtt 1.58 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.it.vtt 1.58 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/07. LeNet Model Training-9580p7ZRQVY.zh-CN.vtt 1.58 KB
    Part 01-Module 04-Lesson 08_Object Detection/11. Color Histogram Features-8ZvNANafMU8.zh-CN.vtt 1.58 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.pt.vtt 1.58 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/03. What Is Deep Learning-INt1nULYPak.en.vtt 1.58 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.en-US.vtt 1.58 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-wLz-nF2CrHc.ru.vtt 1.58 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/30. Inception Module-SlTm03bEOxA.en.vtt 1.58 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/01. Introduction-Vnj2VNQROtI.en.vtt 1.58 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/04. 01 - Running The Simulator-rKw8md-zVno.zh-CN.vtt 1.58 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.en.vtt 1.57 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/16. 15 L EnvironmentClassification-4NOvHff7WFQ.zh-CN.vtt 1.57 KB
    Part 03-Module 02-Lesson 02_Prediction/13. 13 L Overview Of Hybrid Approaches-yCRvxI5wJS0.zh-CN.vtt 1.57 KB
    Part 02-Module 03-Lesson 04_Motion Models/04. Yaw Rate Velocity-tS7BYlCo3nU.zh-CN.vtt 1.57 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/02. lane line intro-aIkAcXVxf2w.zh-CN.vtt 1.57 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/10. Skip Connections-JUYLA5PWzo0.en.vtt 1.57 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/04. Getting Started, Camera Calibration-0zlyx5nL8Uo.zh-CN.vtt 1.57 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/18. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.ja.vtt 1.57 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/29. Assignment UKF Update-f36o4sCEQvY.en.vtt 1.56 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.es-ES.vtt 1.56 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/30. Inception Module-SlTm03bEOxA.pt-BR.vtt 1.56 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.es.vtt 1.56 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.ar.vtt 1.56 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature-sAdM20gFi2M.en.vtt 1.56 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/06. CTRV Integral Position-9E6K4Aw_MaI.en.vtt 1.56 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.pt-BR.vtt 1.56 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/21. Recap-7WOQ89HYhxA.en.vtt 1.55 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/15. Recap-7G5xOFeSrh0.en.vtt 1.55 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/06. Putting It All Together-CZ71uEy8EtI.en.vtt 1.55 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/02. Lesson Introduction-_VjhAIChVcI.en.vtt 1.55 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Intro-JFwj5UtKmPY.en.vtt 1.54 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-z-cX1kYbC1w.ja.vtt 1.54 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.en.vtt 1.54 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Nd113 C6 L3 09 L Trigonometric Ratios V2-wquwvrT9g_U.en.vtt 1.54 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/05. Distortion-Bv3o0INBQIU.en.vtt 1.54 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.es-ES.vtt 1.53 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/10. UKF Process Chain-sU7ifLgxxas.zh-CN.vtt 1.53 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy-m989etSymQQ.ar.vtt 1.53 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/04. Test Cases-7CNatJ7PqZ4.en-US.vtt 1.52 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.en-US.vtt 1.52 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.en.vtt 1.52 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/22. Sensor Fusion General Processing Flow-dcTY4vRg5vo.zh-CN.vtt 1.52 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/20. Assignment Sigma Point Prediction-RQvnRpSPUak.en.vtt 1.52 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/04. Test Cases-7CNatJ7PqZ4.en.vtt 1.52 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.pt-BR.vtt 1.52 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/01. Welcome to Collections-cZORvZq-tI0.zh-CN.vtt 1.52 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.en.vtt 1.52 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.es-MX.vtt 1.52 KB
    Part 01-Module 04-Lesson 08_Object Detection/17. Gradient Features-cvGtDBu8ONQ.zh-CN.vtt 1.52 KB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-YwAyqkznxa0.en.vtt 1.51 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/09. Distortion-q3B71N6FrGw.en.vtt 1.51 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/18. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/02. Onward!-oYHg46OYpsM.en.vtt 1.51 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.pt-PT.vtt 1.51 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.it.vtt 1.51 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.ar.vtt 1.51 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/02. Introduction To Deep Learning-7xRwuECaXBs.zh-CN.vtt 1.51 KB
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-SFcHsK2SWrI.en.vtt 1.5 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/01. Kalman Filter Introduction-2zmbIjHpkRM.en-US.vtt 1.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.pt.vtt 1.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.ja.vtt 1.5 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.ar.vtt 1.5 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/17. Regularization-QcJBhbuCl5g.pt-BR.vtt 1.5 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-MXXTeWLXliY.en.vtt 1.5 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.en.vtt 1.5 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/03. Fully Convolutional Networks-_Lh2ozg5yTs.en.vtt 1.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.pt-PT.vtt 1.5 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/11. Coding Up the SVM-2ieszOqnpWs.zh-CN.vtt 1.5 KB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.ar.vtt 1.5 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Nd113 C6 L3 04 L Moving At An Angle V2-2KDq_ZzN3Mk.en.vtt 1.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.pt.vtt 1.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.ja.vtt 1.5 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/18. Turtlesim Comms Get Info-Y6rMQreuOL4.zh-CN.vtt 1.5 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/14. 10 - Image Cropping-SpPxyW-869U.en.vtt 1.5 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.it.vtt 1.49 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/z.png 1.49 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.ar.vtt 1.49 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-MMDcirk9QPM.ja.vtt 1.49 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/04. 03 L Properties Of Motion Planning Algorithsm-lNpD43L0qvw.en.vtt 1.49 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/09. Compute Graph-dWc4ktFohNg.zh-CN.vtt 1.49 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/01. LeNet Architecture-FQYrzmnbsMs.en.vtt 1.48 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/29. 1x1 Convolutions-Zmzgerm6SjA.zh-CN.vtt 1.48 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-MXXTeWLXliY.ja.vtt 1.48 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.en.vtt 1.48 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/17. Turtlesim Comms Topics-46YAnfvhTMc.zh-CN.vtt 1.48 KB
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-rA8ZpMR6yXM.en.vtt 1.48 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-MMDcirk9QPM.en.vtt 1.48 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.ja.vtt 1.48 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/02. Lesson Introduction-_VjhAIChVcI.zh-CN.vtt 1.48 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.es-ES.vtt 1.48 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.pt-BR.vtt 1.48 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/02. L1 02 L Introduction To Lesson-jinuK2-qPh4.zh-CN.vtt 1.47 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/03. Pseudocode-JNm1fnWj5To.zh-CN.vtt 1.47 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.es-ES.vtt 1.47 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.es.vtt 1.47 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/04. L1 04 L Perception Subsystem-zo_JO5Sytuc.en.vtt 1.47 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.es-ES.vtt 1.47 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/16. 15 L Actuator Constraints-EwcDwdM1msg.en.vtt 1.47 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/17. Regularization-QcJBhbuCl5g.en.vtt 1.47 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/11. canny and gradient-LQM--KPJjD0.zh-CN.vtt 1.47 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Intro-JFwj5UtKmPY.zh-CN.vtt 1.47 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/02. Overview of Catkin Workspaces and Packages-VqYNipeW72o.zh-CN.vtt 1.46 KB
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-YwAyqkznxa0.zh-CN.vtt 1.46 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/14. Participating in open source projects 2-elZCLxVvJrY.en.vtt 1.46 KB
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/03. Cover Letter Components-DVvLiKedRw4.zh-CN.vtt 1.46 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs-6UgInp_gf1w.pt-BR.vtt 1.46 KB
    Part 03-Module 02-Lesson 02_Prediction/18. Mahni Prediction Outro-hRozwCcoocY.en-US.vtt 1.46 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-mzKPXz-Yhwk.ar.vtt 1.46 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-CxAxRCv9WoA.zh-CN.vtt 1.46 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/05. CTRV Integral Last 3-dcR9RtwJ6yk.en.vtt 1.46 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/05. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.46 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.en.vtt 1.45 KB
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-G7nvigL0aDw.en.vtt 1.45 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-tSfmiuB9s2c.es-ES.vtt 1.45 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro-pECnr-5F3_Q.en-US.vtt 1.45 KB
    Part 02-Module 03-Lesson 02_Localization Overview/26. Sense and Move-1s2dRczcu1A.zh-CN.vtt 1.45 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid Solution - Artificial Intelligence for Robotics-pH6sDfBalaw.ru.vtt 1.44 KB
    Part 01-Module 04-Lesson 08_Object Detection/01. Intro to Vehicle Tracking-BAe-zslg088.zh-CN.vtt 1.44 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/21. ResNet-fDCgul26GGk.en.vtt 1.44 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-VJvBzdTPlAQ.en.vtt 1.44 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-w-czJptEyBk.ar.vtt 1.44 KB
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-hcoKwWBvB6Y.zh-CN.vtt 1.44 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-SwxRWZaC1FM.ru.vtt 1.44 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro-pECnr-5F3_Q.en.vtt 1.44 KB
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-Ex0su1DnIuw.en.vtt 1.44 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.en.vtt 1.44 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basic Unscented Transformation-r594P0XjKa4.en.vtt 1.43 KB
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-G7nvigL0aDw.ja.vtt 1.43 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/09. Distortion-q3B71N6FrGw.zh-CN.vtt 1.43 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/01. Kalman Filter Introduction-2zmbIjHpkRM.zh-CN.vtt 1.43 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/24. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.it.vtt 1.43 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.es-MX.vtt 1.43 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-7kllZxX-Nso.en.vtt 1.43 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/06. LeNet Evaluation Pipeline-cibEsIOTE60.en.vtt 1.43 KB
    Part 01-Module 04-Lesson 08_Object Detection/08. Color Features-JT4fDW7lsG8.en.vtt 1.43 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/08. Hash Maps-A-ahUVi8pYQ.zh-CN.vtt 1.43 KB
    Part 01-Module 04-Lesson 01_Camera Calibration/05. Distortion-Bv3o0INBQIU.zh-CN.vtt 1.43 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.zh-CN.vtt 1.42 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/03. What Is Deep Learning-INt1nULYPak.zh-CN.vtt 1.42 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/29. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42 KB
    Part 03-Module 02-Lesson 02_Prediction/18. Mahni Prediction Outro-hRozwCcoocY.en.vtt 1.42 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python-pauohSxuCVs.ar.vtt 1.42 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/14. 10 - Image Cropping-SpPxyW-869U.zh-CN.vtt 1.42 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-TnFq6hufsYs.zh-CN.vtt 1.42 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/04. Transfer Learning-pkCUxzJNtfI.en.vtt 1.42 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/39. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42 KB
    Part 02-Module 03-Lesson 04_Motion Models/02. Lesson Introduction--bPE6USDH3A.zh-CN.vtt 1.42 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/05. Brief History of ROS-Cw-FEyqU2NI.en.vtt 1.42 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/30. Inception Module-SlTm03bEOxA.zh-CN.vtt 1.42 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.pt-PT.vtt 1.41 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-MXXTeWLXliY.pt-BR.vtt 1.41 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.pt.vtt 1.41 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs-6UgInp_gf1w.en.vtt 1.41 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.it.vtt 1.41 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Vector-Qr99RXys-G0.en.vtt 1.41 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/21. Recap-7WOQ89HYhxA.zh-CN.vtt 1.41 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/29. Assignment UKF Update-f36o4sCEQvY.zh-CN.vtt 1.41 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/01. L3 01 Introduction- Item Definition And HARA-6rojuFZJ4Os.en.vtt 1.4 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/11. 07 - LeNet Again-rVusn6F5i7s.en.vtt 1.4 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-MMDcirk9QPM.zh-CN.vtt 1.4 KB
    Part 05-Module 01-Lesson 01_Develop Your Personal Brand/06. Pitching to a Recruiter-LxAdWaA-qTQ.pt-BR.vtt 1.4 KB
    Part 02-Module 03-Lesson 03_Markov Localization/22. Implementation Details For Motion Model-O47bOcJm1eE.en.vtt 1.4 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.en.vtt 1.4 KB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-AROtzVxDDx4.en.vtt 1.4 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.pt-PT.vtt 1.4 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/04. Fully Connected to 1x1 Convolution-xbPtOhkJW1A.en.vtt 1.4 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.zh-CN.vtt 1.4 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-_AhoOd8YUK0.pt.vtt 1.4 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.en.vtt 1.39 KB
    Part 03-Module 02-Lesson 01_Search/21. Optimum Policy-7kllZxX-Nso.zh-CN.vtt 1.39 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/38. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.39 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.ja.vtt 1.39 KB
    Part 02-Module 03-Lesson 04_Motion Models/07. Odometry-IusJ3cTusp8.en.vtt 1.39 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Nd113 C6 L3 045 L Moving At An Angle Part2 V2-iI6zCp0RegM.en.vtt 1.39 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/35. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/07. Alexnet-X-QVsH27Mo4.en.vtt 1.38 KB
    Part 02-Module 03-Lesson 02_Localization Overview/28. Localization Summary-MVbo4OAgQCc.zh-CN.vtt 1.38 KB
    Part 01-Module 04-Lesson 07_Decision Trees/32. Tuning Criterion Parameter-V80QLNK5fFQ.zh-CN.vtt 1.38 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/14. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-VJvBzdTPlAQ.ja.vtt 1.38 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/01. LeNet Architecture-FQYrzmnbsMs.zh-CN.vtt 1.38 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.ja.vtt 1.38 KB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.ja.vtt 1.38 KB
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-G7nvigL0aDw.zh-CN.vtt 1.38 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/15. Visualizing the New Feature-sAdM20gFi2M.zh-CN.vtt 1.38 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-edcfMK_bKXw.es-ES.vtt 1.37 KB
    Part 02-Module 02-Lesson 03_C++ Checkpoint/01. 04 Sensor Fusion A02 High Performance Computing-rMGNMvjG5KA.en.vtt 1.37 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/06. Putting It All Together-CZ71uEy8EtI.zh-CN.vtt 1.37 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/10. Nd113 C6 L3 08 L Opposite Adjacent Hypotenuse V2-hJ-7qj9iHWo.en.vtt 1.37 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/03. State Vector Introduction-hLVz0YOhntA.en.vtt 1.37 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.en.vtt 1.37 KB
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-rA8ZpMR6yXM.zh-CN.vtt 1.37 KB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.pt-BR.vtt 1.37 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-tSfmiuB9s2c.en.vtt 1.36 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.it.vtt 1.36 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/05. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.36 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/06. CTRV Integral Position-9E6K4Aw_MaI.zh-CN.vtt 1.36 KB
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-rA8ZpMR6yXM.ja.vtt 1.36 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/09. Power of Trigonometry-yLMTfBq_I3k.en.vtt 1.36 KB
    Part 02-Module 04-Lesson 01_PID Control/09. Systematic Bias - Artificial Intelligence for Robotics-1wxFEcqq3_c.ja.vtt 1.36 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/03. L6 04 Hardware Failure Metrics-wlCVuAJj1xk.en.vtt 1.36 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/03. What Is Deep Learning-INt1nULYPak.pt-BR.vtt 1.36 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/30. Validation Test Set Size Continued-cgoB-MJObmw.ja-JP.vtt 1.36 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.pt-BR.vtt 1.36 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/01. L3 01 Introduction- Item Definition And HARA-6rojuFZJ4Os.zh-CN.vtt 1.36 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/05. Let'S Get Started-ySIDqaXLhHw.pt-BR.vtt 1.36 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.pt-BR.vtt 1.36 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.en.vtt 1.35 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/10. Skip Connections-JUYLA5PWzo0.zh-CN.vtt 1.35 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/21. ResNet-fDCgul26GGk.zh-CN.vtt 1.35 KB
    Part 01-Module 04-Lesson 08_Object Detection/04. Object Detection Overview-zNBWOHycI0I.en.vtt 1.35 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/04. Transfer Learning-pkCUxzJNtfI.zh-CN.vtt 1.35 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-xU84TShi7I4.ar.vtt 1.35 KB
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/02. Onward!-oYHg46OYpsM.zh-CN.vtt 1.35 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Nd113 C6 L3 05 L Moving At 53 Degrees V2-VmoknN6xLKs.en.vtt 1.35 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/11. 07 - LeNet Again-rVusn6F5i7s.zh-CN.vtt 1.35 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/02. Outro to Project-LatP7XUPgIE.en.vtt 1.35 KB
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/15. Recap-7G5xOFeSrh0.zh-CN.vtt 1.34 KB
    Part 02-Module 04-Lesson 01_PID Control/01. Intro-CelGYr2DgpI.en.vtt 1.34 KB
    Part 03-Module 02-Lesson 02_Prediction/18. Mahni Prediction Outro-hRozwCcoocY.zh-CN.vtt 1.34 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.en.vtt 1.34 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-ygveMIhCtDg.ar.vtt 1.34 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/15. 11 - NVIDIA Architecture-6vVPHcgQkLg.en.vtt 1.34 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-ICUYxC-8d7o.ar.vtt 1.34 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/04. L6 06 Programming Languages-KpAhkXNan7Y.zh-CN.vtt 1.33 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-plx_F2BkwNQ.ar.vtt 1.33 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.it.vtt 1.33 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/01. Intro to Classifiers-u7XLk1Q9Efw.en.vtt 1.33 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-yo8jf0U4hlc.es-ES.vtt 1.33 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/33. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/04. Test Cases-7CNatJ7PqZ4.zh-CN.vtt 1.33 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.ar.vtt 1.33 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.ja.vtt 1.33 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Nd113 C6 L3 04 L Moving At An Angle V2-2KDq_ZzN3Mk.zh-CN.vtt 1.32 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-WVg5-vxQDm8.ar.vtt 1.32 KB
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-SFcHsK2SWrI.zh-CN.vtt 1.32 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 L Hara Risk Part 3-buFLRLfwSWw.en.vtt 1.32 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/30. Validation Test Set Size Continued-cgoB-MJObmw.pt-BR.vtt 1.32 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.pt-PT.vtt 1.32 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/04. 03 L Properties Of Motion Planning Algorithsm-lNpD43L0qvw.zh-CN.vtt 1.32 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro-pECnr-5F3_Q.zh-CN.vtt 1.32 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.es-ES.vtt 1.32 KB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-AROtzVxDDx4.ja.vtt 1.32 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/09. Interview Wrap-Up-sz4Ekcu9a_Q.en-US.vtt 1.31 KB
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-EOLzooGccPc.zh-CN.vtt 1.31 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.pt.vtt 1.31 KB
    Part 02-Module 03-Lesson 02_Localization Overview/33. Cancer Test-OgC5M2XdIac.ja.vtt 1.31 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/09. Interview Wrap-Up-sz4Ekcu9a_Q.en.vtt 1.31 KB
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/06. LeNet Evaluation Pipeline-cibEsIOTE60.zh-CN.vtt 1.31 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/02. Bounding Boxes-uPv4d0Xl8hc.en.vtt 1.31 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/03. Welcome to ROS Essentials-rvebtwi46SI.en.vtt 1.31 KB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.en.vtt 1.31 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-tSfmiuB9s2c.ja.vtt 1.31 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-MXXTeWLXliY.zh-CN.vtt 1.31 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/01. 03 Deep Learning A04 Simulation-K8ROKGMm-mc.en.vtt 1.31 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/33. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.zh-CN.vtt 1.31 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-ncFtwW5urHk.zh-CN.vtt 1.31 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/16. Regularization Intro-pECnr-5F3_Q.pt-BR.vtt 1.3 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/35. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.3 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.pt-PT.vtt 1.3 KB
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-lCWGV6ZuXt0.zh-CN.vtt 1.3 KB
    Part 02-Module 03-Lesson 02_Localization Overview/23. Limit Distribution Quiz-kfPWiMsnWFI.pt.vtt 1.3 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/07. CTRV Zero Yaw Rate-8gAsx7OAH6c.en.vtt 1.3 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/06. Network Of ReLUs-mJk1UvhDb1g.en.vtt 1.3 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/14. Participating in open source projects 2-elZCLxVvJrY.zh-CN.vtt 1.3 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.zh-CN.vtt 1.3 KB
    Part 01-Module 01-Lesson 01_Welcome/02. Meet Your Instructors-QiflJFVOt18.en.vtt 1.29 KB
    Part 01-Module 04-Lesson 08_Object Detection/08. Color Features-JT4fDW7lsG8.zh-CN.vtt 1.29 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-edcfMK_bKXw.ja.vtt 1.29 KB
    Part 02-Module 03-Lesson 03_Markov Localization/30. Observation Model Intro-SDM1aVqRBCk.en.vtt 1.29 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 L Hara Risk Part 3-buFLRLfwSWw.zh-CN.vtt 1.29 KB
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-Ex0su1DnIuw.zh-CN.vtt 1.29 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-yo8jf0U4hlc.ja.vtt 1.29 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python-pauohSxuCVs.ja.vtt 1.28 KB
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.ru.vtt 1.28 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-z-cX1kYbC1w.en.vtt 1.28 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/10. 09 L Hybrid A- Tradeoffs Solution-6yAdF5u2B04.en.vtt 1.28 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/12. Nonlinear SVMs-6UgInp_gf1w.zh-CN.vtt 1.28 KB
    Part 01-Module 03-Lesson 08_Keras/01. 03 Deep Learning A02 Deep Learning Breakthroughs-iYdQ7bKBxFE.en.vtt 1.28 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/12. Sebastian Discusses Risk-nuDIfITdhSc.en.vtt 1.28 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Nd113 C6 L3 09 L Trigonometric Ratios V2-wquwvrT9g_U.zh-CN.vtt 1.28 KB
    Part 01-Module 04-Lesson 08_Object Detection/30. Sliding Windows-HMtd9EQooCk.en.vtt 1.27 KB
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/02. Shortest Path Problem-huKUM97Vve8.zh-CN.vtt 1.27 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/07. Alexnet-X-QVsH27Mo4.zh-CN.vtt 1.27 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-yo8jf0U4hlc.en.vtt 1.27 KB
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--gNoDMlRwyc.ja.vtt 1.27 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/17. Regularization-QcJBhbuCl5g.zh-CN.vtt 1.27 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/11. L3 25 L HARA Outro-T0Xxu-Xh4J0.en.vtt 1.27 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/16. 15 L Actuator Constraints-EwcDwdM1msg.zh-CN.vtt 1.27 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/14. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/12. UKF Basic Unscented Transformation-r594P0XjKa4.zh-CN.vtt 1.27 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/06. Network Of ReLUs-mJk1UvhDb1g.zh-CN.vtt 1.27 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/05. Let'S Get Started-ySIDqaXLhHw.en.vtt 1.26 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/01. Project Steps-0lyUMJdg-PY.en.vtt 1.26 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/10. 09 L Hybrid A- Tradeoffs Solution-6yAdF5u2B04.zh-CN.vtt 1.26 KB
    Part 02-Module 03-Lesson 04_Motion Models/07. Odometry-IusJ3cTusp8.zh-CN.vtt 1.26 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/03. Confirming Inputs-8lPTOG1yLsg.en-US.vtt 1.26 KB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.ar.vtt 1.26 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-sy_jiSEy-Nw.ar.vtt 1.26 KB
    Part 01-Module 04-Lesson 08_Object Detection/33. Multi-scale Windows-uiPNkPggWLE.en.vtt 1.26 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/03. Fully Convolutional Networks-_Lh2ozg5yTs.zh-CN.vtt 1.26 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.pt-BR.vtt 1.26 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/03. Confirming Inputs-8lPTOG1yLsg.en.vtt 1.26 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/05. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.26 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-z-cX1kYbC1w.pt-BR.vtt 1.26 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/21. 20 L Structures Trajectory Generation Overview-N2cwqKR63x8.en.vtt 1.26 KB
    Part 02-Module 03-Lesson 05_Particle Filters/24. You and Sebastian-gTMe0E6SM_M.en.vtt 1.25 KB
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.bn.vtt 1.25 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/20. Assignment Sigma Point Prediction-RQvnRpSPUak.zh-CN.vtt 1.25 KB
    Part 02-Module 03-Lesson 02_Localization Overview/18. Move Function-wfjE0mVADIk.ja.vtt 1.25 KB
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-Ex0su1DnIuw.ja.vtt 1.25 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/15. L6 22 L Lesson Outro-zSyoNGrZZ0k.en.vtt 1.25 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/05. CTRV Integral Last 3-dcR9RtwJ6yk.zh-CN.vtt 1.25 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-edcfMK_bKXw.en.vtt 1.25 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-VBs6D4ggnYY.zh-CN.vtt 1.25 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/05. Brief History of ROS-Cw-FEyqU2NI.zh-CN.vtt 1.25 KB
    Part 06-Module 01-Lesson 05_Trees/13. BST Complications-pcB0wV7myy4.pt-BR.vtt 1.25 KB
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-n9_th4V4qE4.ru.vtt 1.24 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.ar.vtt 1.24 KB
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/02. Outro to Project-LatP7XUPgIE.zh-CN.vtt 1.24 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/12. Sebastian Discusses Risk-nuDIfITdhSc.zh-CN.vtt 1.24 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/21. EKF Algortihm Generalization-co0ZczAuwdM.en.vtt 1.24 KB
    Part 02-Module 04-Lesson 01_PID Control/09. Systematic Bias - Artificial Intelligence for Robotics-1wxFEcqq3_c.en.vtt 1.23 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/10. L3 20 L HARA Safety Goals-lMT1EB5cZR8.en.vtt 1.23 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/20. Dropout Pt. 2-8nG8zzJMbZw.en-US.vtt 1.23 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/01. Gradient Threshold-2TlORF3RzH8.en.vtt 1.23 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/27. Transition Overfitting - Dataset Size-Lmxem7ud9yk.ja-JP.vtt 1.23 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/01. Intro to Classifiers-u7XLk1Q9Efw.zh-CN.vtt 1.22 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.pt-BR.vtt 1.22 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/04. Fully Connected to 1x1 Convolution-xbPtOhkJW1A.zh-CN.vtt 1.22 KB
    Part 01-Module 04-Lesson 08_Object Detection/38. Tracking Pipeline-ioaSZFCn3iI.en.vtt 1.22 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/03. Welcome to ROS Essentials-rvebtwi46SI.zh-CN.vtt 1.22 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-Exl_kCyUc8U.en.vtt 1.22 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.en.vtt 1.22 KB
    Part 02-Module 03-Lesson 03_Markov Localization/13. Derivation Outline-coHodx-I56U.en.vtt 1.22 KB
    Part 02-Module 03-Lesson 05_Particle Filters/14. Importance Weight-VJvBzdTPlAQ.zh-CN.vtt 1.22 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/02. 01 L Lesson Overview-BU4oChjLv7A.en.vtt 1.22 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.ja.vtt 1.22 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.ja.vtt 1.21 KB
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.ar.vtt 1.21 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/21. 20 L Structures Trajectory Generation Overview-N2cwqKR63x8.zh-CN.vtt 1.21 KB
    Part 01-Module 04-Lesson 08_Object Detection/30. Sliding Windows-HMtd9EQooCk.zh-CN.vtt 1.21 KB
    Part 06-Module 01-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.en-US.vtt 1.21 KB
    Part 02-Module 03-Lesson 03_Markov Localization/22. Implementation Details For Motion Model-O47bOcJm1eE.zh-CN.vtt 1.21 KB
    Part 01-Module 01-Lesson 01_Welcome/02. Meet Your Instructors-QiflJFVOt18.zh-CN.vtt 1.21 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/11. Laser Measurements-drbV05qKV8w.en.vtt 1.21 KB
    Part 06-Module 01-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.en.vtt 1.2 KB
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/04. L1 04 L Perception Subsystem-zo_JO5Sytuc.zh-CN.vtt 1.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.es-ES.vtt 1.2 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.zh-CN.vtt 1.2 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/05. Let'S Get Started-ySIDqaXLhHw.zh-CN.vtt 1.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.es-ES.vtt 1.2 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-rczAG7meAY4.ja.vtt 1.2 KB
    Part 03-Module 03-Lesson 03_Scene Understanding/02. Bounding Boxes-uPv4d0Xl8hc.zh-CN.vtt 1.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.en.vtt 1.2 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.es.vtt 1.2 KB
    Part 03-Module 02-Lesson 01_Search/15. Implement A-V0Ppaw5G2Pg.ru.vtt 1.19 KB
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/01. Gradient Threshold-2TlORF3RzH8.zh-CN.vtt 1.19 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.ja.vtt 1.19 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-z-cX1kYbC1w.zh-CN.vtt 1.19 KB
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.ar.vtt 1.19 KB
    Part 02-Module 03-Lesson 05_Particle Filters/08. Robot Class Details-ZFqEh8JylvI.en.vtt 1.19 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-osn2fVnCVgQ.ar.vtt 1.19 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.en-US.vtt 1.19 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/07. L2 12 L Outro-NNp7X8thmX8.en.vtt 1.19 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/02. 01 L Lesson Overview-BU4oChjLv7A.zh-CN.vtt 1.19 KB
    Part 02-Module 04-Lesson 01_PID Control/01. Intro-CelGYr2DgpI.zh-CN.vtt 1.19 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.en.vtt 1.19 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.ja.vtt 1.19 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/10. L3 20 L HARA Safety Goals-lMT1EB5cZR8.zh-CN.vtt 1.18 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/11. L3 25 L HARA Outro-T0Xxu-Xh4J0.zh-CN.vtt 1.18 KB
    Part 02-Module 04-Lesson 01_PID Control/03. Proportional Control - Artificial Intelligence for Robotics-gGo-gSFqYqg.ru.vtt 1.18 KB
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain-KYieR9y-ue4.pt-BR.vtt 1.18 KB
    Part 05-Module 02-Lesson 01_GitHub Profile Review/08. Writing READMEs with Walter-DQEfT2Zq5_o.zh-CN.vtt 1.18 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy-m989etSymQQ.ja.vtt 1.18 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 Hara Risk Part 2--3EXJjR6fbk.zh-CN.vtt 1.18 KB
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--gNoDMlRwyc.en.vtt 1.18 KB
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.ru.vtt 1.18 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.zh-CN.vtt 1.18 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/14. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18 KB
    Part 01-Module 03-Lesson 02_MiniFlow/img/newx.png 1.18 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-p_xPoBRJdtE.en.vtt 1.18 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.pt-PT.vtt 1.18 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/06. Nd113 C6 L3 045 L Moving At An Angle Part2 V2-iI6zCp0RegM.zh-CN.vtt 1.17 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/17. Assignment Augmentation-5p-PqtxQeM8.en.vtt 1.17 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/01. L2 01 L Introduction- Safety Plan-nQD8NgwXuj4.zh-CN.vtt 1.17 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.pt.vtt 1.17 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/01. Vehicle Models Intro-qkT7Sr8HHBw.en.vtt 1.17 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.pt-BR.vtt 1.17 KB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-AROtzVxDDx4.zh-CN.vtt 1.17 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/04. Test Cases-7CNatJ7PqZ4.pt-BR.vtt 1.17 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.es-ES.vtt 1.17 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/28. 21 Validation And Test Set V2-iC2QOiavbrw.pt-BR.vtt 1.17 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/26. Conclusion-6kFMxhlfHuI.es-ES.vtt 1.16 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/06. L2 10 L Confirmation Measures-3XiALMje_5Q.en.vtt 1.16 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/01. L2 01 L Introduction- Safety Plan-nQD8NgwXuj4.en.vtt 1.16 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-rczAG7meAY4.en.vtt 1.16 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/03. L6 04 Hardware Failure Metrics-wlCVuAJj1xk.zh-CN.vtt 1.16 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.en-US.vtt 1.16 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-rczAG7meAY4.es-ES.vtt 1.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.en.vtt 1.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.ar.vtt 1.16 KB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.pt-BR.vtt 1.16 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/19. Kalman Prediction-tSfmiuB9s2c.zh-CN.vtt 1.16 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.it.vtt 1.16 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/03. State Vector Introduction-hLVz0YOhntA.zh-CN.vtt 1.16 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.en.vtt 1.16 KB
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-dBA94pR6JYw.ja.vtt 1.16 KB
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1--lq0uzHd9T0.en.vtt 1.16 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/11. Laser Measurements-drbV05qKV8w.zh-CN.vtt 1.16 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/09. Interview Wrap-Up-sz4Ekcu9a_Q.zh-CN.vtt 1.16 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/25. Outro-k5VhLE0OoOM.en.vtt 1.16 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/33. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15 KB
    Part 02-Module 03-Lesson 05_Particle Filters/24. You and Sebastian-gTMe0E6SM_M.ja.vtt 1.15 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-Exl_kCyUc8U.ja.vtt 1.15 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/17. Conclusion-gMbDqd4ItiU.en.vtt 1.15 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/03. L3 01 V2-a_eHxfy5tnI.en.vtt 1.15 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.it.vtt 1.15 KB
    Part 02-Module 03-Lesson 05_Particle Filters/08. Robot Class Details-ZFqEh8JylvI.ja.vtt 1.15 KB
    Part 02-Module 03-Lesson 03_Markov Localization/30. Observation Model Intro-SDM1aVqRBCk.zh-CN.vtt 1.15 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/07. CTRV Zero Yaw Rate-8gAsx7OAH6c.zh-CN.vtt 1.15 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-ICUYxC-8d7o.ja.vtt 1.15 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.pt-BR.vtt 1.14 KB
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.ar.vtt 1.14 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/08. ROS L2 Recap-OIZsHXuHWuI.en.vtt 1.14 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.zh-CN.vtt 1.14 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/18. VGG-akFO1sH7Q_0.en.vtt 1.14 KB
    Part 01-Module 04-Lesson 08_Object Detection/04. Object Detection Overview-zNBWOHycI0I.zh-CN.vtt 1.14 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/11. Supervised Classification-XTGsutypAPE.pt-BR.vtt 1.14 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-EllzeBecnkU.ar.vtt 1.14 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.en.vtt 1.14 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/10. Computer Vision-wxQhfSdxjKU.en.vtt 1.14 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-edcfMK_bKXw.zh-CN.vtt 1.14 KB
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain-KYieR9y-ue4.en.vtt 1.14 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Vector-Qr99RXys-G0.zh-CN.vtt 1.14 KB
    Part 01-Module 04-Lesson 07_Decision Trees/15. Formula of Entropy-NHAatuG0T3Q.zh-CN.vtt 1.14 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.pt-BR.vtt 1.13 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/12. Summary Functional Safety Concept-NVCU1mOxnAo.en.vtt 1.13 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/04. Additional Cost Constraints-lsdZtPPOhtk.en.vtt 1.13 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/21. EKF Algortihm Generalization-co0ZczAuwdM.zh-CN.vtt 1.13 KB
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/01. Project Steps-0lyUMJdg-PY.zh-CN.vtt 1.13 KB
    Part 03-Module 04-Lesson 04_Functional Safety Hazard Analysis and Risk Assessment/08. L3 14 Hara Risk Part 2--3EXJjR6fbk.en.vtt 1.13 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-wLz-nF2CrHc.ja.vtt 1.13 KB
    Part 03-Module 02-Lesson 01_Search/09. Maze-ge_-o0RfrgM.ru.vtt 1.13 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-mzKPXz-Yhwk.ja.vtt 1.13 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.pt-PT.vtt 1.13 KB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-JNI9O9FjfDQ.ja.vtt 1.13 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-sy_jiSEy-Nw.ja.vtt 1.13 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/09. Power of Trigonometry-yLMTfBq_I3k.zh-CN.vtt 1.13 KB
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-jR7FERpsqe4.pt.vtt 1.13 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/11. Lesson Summary-c_PnlhHye3w.zh-CN.vtt 1.12 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.en.vtt 1.12 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python-pauohSxuCVs.en.vtt 1.12 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/07. L2 12 L Outro-NNp7X8thmX8.zh-CN.vtt 1.12 KB
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain-KYieR9y-ue4.ja.vtt 1.12 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/35. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.zh-CN.vtt 1.12 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-xU84TShi7I4.ja.vtt 1.12 KB
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/15. L6 22 L Lesson Outro-zSyoNGrZZ0k.zh-CN.vtt 1.12 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python-pauohSxuCVs.pt-BR.vtt 1.12 KB
    Part 02-Module 03-Lesson 03_Markov Localization/13. Derivation Outline-coHodx-I56U.zh-CN.vtt 1.12 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-dGS0SKu1ox0.ar.vtt 1.12 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy-m989etSymQQ.pt-BR.vtt 1.12 KB
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-Lf2DYUCsUH4.ja.vtt 1.12 KB
    Part 02-Module 03-Lesson 05_Particle Filters/24. You and Sebastian-gTMe0E6SM_M.zh-CN.vtt 1.12 KB
    Part 02-Module 04-Lesson 01_PID Control/09. Systematic Bias - Artificial Intelligence for Robotics-1wxFEcqq3_c.zh-CN.vtt 1.11 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy-m989etSymQQ.en.vtt 1.11 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/30. Validation Test Set Size Continued-cgoB-MJObmw.zh-CN.vtt 1.11 KB
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-ASUXN9Ay35M.en.vtt 1.11 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/11. Supervised Classification-XTGsutypAPE.en.vtt 1.11 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-Exl_kCyUc8U.zh-CN.vtt 1.11 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-yo8jf0U4hlc.zh-CN.vtt 1.11 KB
    Part 03-Module 04-Lesson 02_Introduction to Functional Safety/11. Lesson Summary-c_PnlhHye3w.en.vtt 1.11 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/15. 11 - NVIDIA Architecture-6vVPHcgQkLg.zh-CN.vtt 1.11 KB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.ja.vtt 1.11 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/10. Computer Vision-wxQhfSdxjKU.zh-CN.vtt 1.1 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/30. Validation Test Set Size Continued-cgoB-MJObmw.en.vtt 1.1 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/03. color selection-bNOWJ9wdmhk.en.vtt 1.1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.pt-PT.vtt 1.1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.pt.vtt 1.1 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/20. Dropout Pt. 2-8nG8zzJMbZw.zh-CN.vtt 1.1 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/10. Nd113 C6 L3 08 L Opposite Adjacent Hypotenuse V2-hJ-7qj9iHWo.zh-CN.vtt 1.1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.es-ES.vtt 1.1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.ja.vtt 1.1 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-ygveMIhCtDg.ja.vtt 1.1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.es.vtt 1.1 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-WVg5-vxQDm8.ja.vtt 1.1 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.pt-BR.vtt 1.09 KB
    Part 06-Module 01-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.zh-CN.vtt 1.09 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.pt-BR.vtt 1.09 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-xU84TShi7I4.en.vtt 1.09 KB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.en.vtt 1.09 KB
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-JNI9O9FjfDQ.en.vtt 1.09 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.ja.vtt 1.09 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/27. Transition Overfitting - Dataset Size-Lmxem7ud9yk.pt-BR.vtt 1.08 KB
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--gNoDMlRwyc.zh-CN.vtt 1.08 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-gbkORDbJM50.ar.vtt 1.08 KB
    Part 02-Module 03-Lesson 03_Markov Localization/02. Markov Location Lesson Overview-rSj5lpzliQg.en.vtt 1.08 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/06. Wrap Up-Pe70LsgCa28.en.vtt 1.08 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/34. 35 L Conclusion-R56iixkZvEE.en.vtt 1.08 KB
    Part 02-Module 03-Lesson 01_Introduction to Localization/04. Localization Intuition Explanation-alIgWnGBUS8.en.vtt 1.08 KB
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1--lq0uzHd9T0.ja.vtt 1.08 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-xU84TShi7I4.zh-CN.vtt 1.08 KB
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.ar.vtt 1.07 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.it.vtt 1.07 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-4qJwfAWG_wQ.ar.vtt 1.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-w-czJptEyBk.pt-BR.vtt 1.07 KB
    Part 06-Module 01-Lesson 02_List-Based Collections/08. Stacks-DQoCO8aGcNc.zh-CN.vtt 1.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-WVg5-vxQDm8.pt-BR.vtt 1.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-mzKPXz-Yhwk.pt-BR.vtt 1.07 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.it.vtt 1.07 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/12. Let's make a deal-l1xMgirpwCU.pt-BR.vtt 1.07 KB
    Part 01-Module 04-Lesson 08_Object Detection/33. Multi-scale Windows-uiPNkPggWLE.zh-CN.vtt 1.07 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/17. Conclusion-gMbDqd4ItiU.zh-CN.vtt 1.07 KB
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-1GCPKAYDPTg.zh-CN.vtt 1.07 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/08. Kalman Filter Equations In C++ Programming-smRjTGQG2SY.en.vtt 1.07 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.zh-CN.vtt 1.07 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-ICUYxC-8d7o.zh-CN.vtt 1.06 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/10. Errors-qtg_HiqoGHY.en.vtt 1.06 KB
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/07. Prediction Step-kNthLZTHDIM.en.vtt 1.06 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/26. Conclusion-6kFMxhlfHuI.en.vtt 1.06 KB
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.ja.vtt 1.06 KB
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/02. Intro to Traffic Sign Classifier-7pULs5sC_7A.en.vtt 1.06 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/01. Vehicle Models Intro-qkT7Sr8HHBw.zh-CN.vtt 1.06 KB
    Part 02-Module 02-Lesson 01_Introduction and Sensors/06. Wrap Up-Pe70LsgCa28.zh-CN.vtt 1.06 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/06. Runtime Analysis-8bI9OgOB2qI.en-US.vtt 1.06 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/29. 27 L WhatShouldBeCheckedSolution-E2TBXjyYb_Y.en.vtt 1.06 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Solution-W4xtf8LTz1c.pt-BR.vtt 1.06 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-mzKPXz-Yhwk.en.vtt 1.06 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-ICUYxC-8d7o.pt-BR.vtt 1.06 KB
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/06. Runtime Analysis-8bI9OgOB2qI.en.vtt 1.06 KB
    Part 06-Module 01-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.en-US.vtt 1.05 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/01. L4 01 L Introduction-srUVh4mBvws.en.vtt 1.05 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-_AAkw_fynwc.es-ES.vtt 1.05 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-sy_jiSEy-Nw.en.vtt 1.05 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-w-czJptEyBk.ja.vtt 1.05 KB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-LJXbHoq5EZk.ja.vtt 1.05 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.pt-PT.vtt 1.05 KB
    Part 06-Module 01-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.en.vtt 1.05 KB
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-wLz-nF2CrHc.en.vtt 1.05 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.pt.vtt 1.05 KB
    Part 01-Module 04-Lesson 07_Decision Trees/03. Multiple Linear Questions-t1Y-nzgI1L4.zh-CN.vtt 1.05 KB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.pt-BR.vtt 1.05 KB
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. 13 - Generalizing Data Collection-SfHOdOHf4Zk.en.vtt 1.05 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Solution-W4xtf8LTz1c.en.vtt 1.05 KB
    Part 01-Module 03-Lesson 04_Deep Neural Networks/20. Dropout Pt. 2-8nG8zzJMbZw.pt-BR.vtt 1.05 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Nd113 C6 L3 05 L Moving At 53 Degrees V2-VmoknN6xLKs.zh-CN.vtt 1.05 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/34. 35 L Conclusion-R56iixkZvEE.zh-CN.vtt 1.05 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size-P4LwoQyJSMk.pt-BR.vtt 1.04 KB
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/01. Intro-1sm1EbfilXI.en.vtt 1.04 KB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.es-MX.vtt 1.04 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.ja.vtt 1.04 KB
    Part 02-Module 03-Lesson 02_Localization Overview/36. Two Coin Quiz-2PZHPjyYnMg.en.vtt 1.04 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-ICUYxC-8d7o.en.vtt 1.04 KB
    Part 03-Module 05-Lesson 02_Introduction to ROS/02. L2 01 L ROS And Carla--G-kEnQWKgY.en.vtt 1.04 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-SwxRWZaC1FM.ja.vtt 1.04 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-WVg5-vxQDm8.en.vtt 1.04 KB
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/03. color selection-bNOWJ9wdmhk.zh-CN.vtt 1.04 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-ygveMIhCtDg.en.vtt 1.04 KB
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-dBA94pR6JYw.en.vtt 1.04 KB
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/01. L4 01 L Introduction-srUVh4mBvws.zh-CN.vtt 1.04 KB
    Part 02-Module 04-Lesson 01_PID Control/08. PD Controller Solution - Artificial Intelligence for Robotics-YgomQgfFlTQ.ru.vtt 1.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.es-ES.vtt 1.03 KB
    Part 06-Module 01-Lesson 06_Graphs/01. Graph Introduction-DFR8F2Q9lgo.pt-BR.vtt 1.03 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes-nQsYfzO7-00.ar.vtt 1.03 KB
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-LJXbHoq5EZk.en.vtt 1.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.es-ES.vtt 1.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.es.vtt 1.03 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/17. Vehicle Models Outro-DqKw_m3Uxr0.en.vtt 1.03 KB
    Part 06-Module 01-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.pt-BR.vtt 1.03 KB
    Part 01-Module 03-Lesson 08_Keras/11. Conclusion-iLeQi96NRy0.en.vtt 1.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.es.vtt 1.03 KB
    Part 06-Module 01-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.en-US.vtt 1.03 KB
    Part 01-Module 04-Lesson 08_Object Detection/38. Tracking Pipeline-ioaSZFCn3iI.zh-CN.vtt 1.03 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.en.vtt 1.03 KB
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/09. Convolutions Cont.-utOv-BKI_vo.en.vtt 1.03 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/16. Calculating NB Accuracy-m989etSymQQ.zh-CN.vtt 1.03 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-yD9C03vqNeI.zh-CN.vtt 1.03 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-TEAGqUkQVdM.ar.vtt 1.02 KB
    Part 06-Module 01-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.en.vtt 1.02 KB
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.en.vtt 1.02 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/03. L3 01 V2-a_eHxfy5tnI.zh-CN.vtt 1.02 KB
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements--3qTapGGa-8.zh-CN.vtt 1.02 KB
    Part 06-Module 01-Lesson 04_Maps and Hashing/01. Introduction to Maps-JEw3iQAnGKQ.zh-CN.vtt 1.02 KB
    Part 03-Module 02-Lesson 04_Trajectory Generation/01. 06 Path Planning A04 From Behavior To Trajectory-7yo_HJ1_J9Q.en.vtt 1.02 KB
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/25. Outro-k5VhLE0OoOM.zh-CN.vtt 1.02 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-sy_jiSEy-Nw.pt-BR.vtt 1.02 KB
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/17. Assignment Augmentation-5p-PqtxQeM8.zh-CN.vtt 1.02 KB
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1--lq0uzHd9T0.zh-CN.vtt 1.02 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-SwxRWZaC1FM.es-ES.vtt 1.02 KB
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-xU84TShi7I4.pt-BR.vtt 1.02 KB
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/01. Trig Preface-DCX6mK9cre0.en.vtt 1.02 KB
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/03. Stanley Terrain Classification-MMllI8f5O5E.en.vtt 1.01 KB
    Part 02-Module 04-Lesson 04_Model Predictive Control/04. Additional Cost Constraints-lsdZtPPOhtk.zh-CN.vtt 1.01 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-plx_F2BkwNQ.en.vtt 1.01 KB
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.pt-BR.vtt 1.01 KB
    Part 02-Module 03-Lesson 04_Motion Models/01. 05 Localization A03 Motion In Autonomy-yiinXr2rV2M.en.vtt 1.01 KB
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.bn.vtt 1.01 KB
    Part 06-Module 01-Lesson 06_Graphs/09. Graph Traversal-Dkt-XxHZaZE.zh-CN.vtt 1.01 KB
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/08. ROS L2 Recap-OIZsHXuHWuI.zh-CN.vtt 1.01 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/28. 21 Validation And Test Set V2-iC2QOiavbrw.zh-CN.vtt 1.01 KB
    Part 03-Module 04-Lesson 03_Functional Safety Safety Plan/06. L2 10 L Confirmation Measures-3XiALMje_5Q.zh-CN.vtt 1.01 KB
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature--_jNi_5zEEQ.ar.vtt 1.01 KB
    Part 01-Module 03-Lesson 09_Transfer Learning/18. VGG-akFO1sH7Q_0.zh-CN.vtt 1.01 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01 KB
    Part 02-Module 03-Lesson 05_Particle Filters/08. Robot Class Details-ZFqEh8JylvI.zh-CN.vtt 1 KB
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid Solution - Artificial Intelligence for Robotics-pH6sDfBalaw.ja.vtt 1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.pt-PT.vtt 1 KB
    Part 02-Module 04-Lesson 03_Vehicle Models/15. Dynamic Models - Part 4 Tire Models-OFIL0yqsV7o.en.vtt 1 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/11. Supervised Classification-XTGsutypAPE.zh-CN.vtt 1 KB
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-_AAkw_fynwc.en.vtt 1 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1 KB
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.pt.vtt 1 KB
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/28. 21 Validation And Test Set V2-iC2QOiavbrw.en.vtt 1 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/06. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1 KB
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/15. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021 B
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/03. Confirming Inputs-8lPTOG1yLsg.zh-CN.vtt 1018 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-plx_F2BkwNQ.pt-BR.vtt 1016 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size-P4LwoQyJSMk.ja-JP.vtt 1015 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.en.vtt 1013 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-mzKPXz-Yhwk.zh-CN.vtt 1012 B
    Part 01-Module 01-Lesson 04_Finding Lane Lines Project/01. 01 Introduction A02 Building A Portfolio-q8ZysjEREiM.en.vtt 1012 B
    Part 02-Module 04-Lesson 03_Vehicle Models/12. Dynamic Models - Part 1 Forces-KRN7GVJkFnU.en.vtt 1011 B
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/09. Interview Wrap-Up-sz4Ekcu9a_Q.pt-BR.vtt 1011 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.pt-PT.vtt 1010 B
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-rczAG7meAY4.zh-CN.vtt 1010 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.pt.vtt 1007 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.en-US.vtt 1007 B
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-_AAkw_fynwc.ja.vtt 1006 B
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid Solution - Artificial Intelligence for Robotics-pH6sDfBalaw.en.vtt 1004 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.en.vtt 1004 B
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.ja.vtt 1001 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/19. Playing Around with Kernel Choices-sy_jiSEy-Nw.zh-CN.vtt 1001 B
    Part 03-Module 03-Lesson 04_Inference Performance/02. Why Bother With Performance-pCg0q8qmgsk.en.vtt 1001 B
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/01. L6 01 L Intro-urgjYwIY3hs.en.vtt 1001 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-EllzeBecnkU.ja.vtt 1000 B
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-K-rQ8KnmmH8.zh-CN.vtt 999 B
    Part 06-Module 01-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.pt-BR.vtt 993 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.en.vtt 993 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM-gnAmmyQ_ZcQ.ar.vtt 991 B
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/02. Intro to Traffic Sign Classifier-7pULs5sC_7A.zh-CN.vtt 991 B
    Part 03-Module 02-Lesson 01_Search/07. Optimal Path-wLz-nF2CrHc.zh-CN.vtt 989 B
    Part 02-Module 04-Lesson 03_Vehicle Models/13. Dynamic Models - Part 2 Slip Angle-oDusBbn820k.en.vtt 989 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-osn2fVnCVgQ.ja.vtt 989 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-ygveMIhCtDg.pt-BR.vtt 989 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-zc_GQiISQ3E.es-ES.vtt 987 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-w-czJptEyBk.en.vtt 986 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-zc_GQiISQ3E.ja.vtt 986 B
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/01. Intro-1sm1EbfilXI.zh-CN.vtt 985 B
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/08. LeNet Testing-NHoyQSZNWA4.zh-CN.vtt 985 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.pt-BR.vtt 984 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.it.vtt 984 B
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-SwxRWZaC1FM.en.vtt 983 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.it.vtt 982 B
    Part 03-Module 04-Lesson 05_Functional Safety Functional Safety Concept/12. Summary Functional Safety Concept-NVCU1mOxnAo.zh-CN.vtt 980 B
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/07. Prediction Step-kNthLZTHDIM.zh-CN.vtt 980 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Effect Last 3-DUm8e7K8qZ8.en.vtt 979 B
    Part 02-Module 03-Lesson 01_Introduction to Localization/04. Localization Intuition Explanation-alIgWnGBUS8.zh-CN.vtt 979 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/12. Let's make a deal-l1xMgirpwCU.en.vtt 976 B
    Part 01-Module 04-Lesson 07_Decision Trees/21. Information Gain-KYieR9y-ue4.zh-CN.vtt 976 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.pt-BR.vtt 975 B
    Part 03-Module 02-Lesson 04_Trajectory Generation/29. 27 L WhatShouldBeCheckedSolution-E2TBXjyYb_Y.zh-CN.vtt 974 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.en.vtt 973 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-znlTyocTgSc.ar.vtt 973 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/03. Stanley Terrain Classification-MMllI8f5O5E.zh-CN.vtt 973 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/27. Transition Overfitting - Dataset Size-Lmxem7ud9yk.en.vtt 971 B
    Part 02-Module 03-Lesson 05_Particle Filters/12. Creating Particles-JNI9O9FjfDQ.zh-CN.vtt 970 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/06. L1 08 L Planning Subsystem-MxG9DtKiSqM.en.vtt 969 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.ar.vtt 969 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Solution-W4xtf8LTz1c.zh-CN.vtt 969 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/26. Assignment Predict Radar Measurement-GYQeizoj09E.en.vtt 968 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.en.vtt 968 B
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/01. L5 01 L Introduction-wBKlo2Lk_A0.en.vtt 966 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.ja.vtt 966 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.it.vtt 966 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.ja.vtt 966 B
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/06. Runtime Analysis-8bI9OgOB2qI.pt-BR.vtt 966 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.ja.vtt 966 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/09. Convolutions Cont.-utOv-BKI_vo.pt-BR.vtt 965 B
    Part 06-Module 01-Lesson 05_Trees/10. Binary Search Trees-7-ZQrugO-Yc.zh-CN.vtt 965 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.ja.vtt 964 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.es-ES.vtt 961 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.pt-PT.vtt 961 B
    Part 03-Module 02-Lesson 03_Behavior Planning/01. 06 Path Planning A03 Where To--9ZrXlxPH4L4.en.vtt 960 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.en-US.vtt 960 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/16. Outro-dps7Ti6Lado.pt-BR.vtt 959 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.pt.vtt 958 B
    Part 02-Module 04-Lesson 03_Vehicle Models/07. Following Trajectories-sOSHaAf_7b8.en.vtt 957 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.en.vtt 957 B
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.en.vtt 956 B
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. 13 - Generalizing Data Collection-SfHOdOHf4Zk.zh-CN.vtt 955 B
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.ja.vtt 953 B
    Part 02-Module 03-Lesson 05_Particle Filters/19. New Particle-LJXbHoq5EZk.zh-CN.vtt 953 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/17. Practice Making a New Feature-ygveMIhCtDg.zh-CN.vtt 953 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes-nQsYfzO7-00.ja.vtt 952 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.en.vtt 951 B
    Part 01-Module 03-Lesson 08_Keras/11. Conclusion-iLeQi96NRy0.zh-CN.vtt 951 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.ja.vtt 951 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.ja.vtt 950 B
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/03. Confirming Inputs-8lPTOG1yLsg.pt-BR.vtt 950 B
    Part 01-Module 03-Lesson 08_Keras/02. Introduction--DZ5OI2uCzU.en.vtt 950 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.zh-CN.vtt 948 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-4qJwfAWG_wQ.ja.vtt 947 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/09. Convolutions Cont.-utOv-BKI_vo.zh-CN.vtt 944 B
    Part 02-Module 03-Lesson 03_Markov Localization/02. Markov Location Lesson Overview-rSj5lpzliQg.zh-CN.vtt 944 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-1mL6CtD3rAM.zh-CN.vtt 944 B
    Part 01-Module 03-Lesson 09_Transfer Learning/29. Outro-WOrM6qopj7A.en.vtt 944 B
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-3jfQlMLyH2o.zh-CN.vtt 942 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons-svA0HOjFFl0.ja-JP.vtt 942 B
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/07. Transposed Convolutions-K6mlLX8ZZDs.en.vtt 942 B
    Part 02-Module 03-Lesson 01_Introduction to Localization/06. Overview of the Lessons-KzvW0gkYOgo.en.vtt 941 B
    Part 03-Module 03-Lesson 04_Inference Performance/11. Quantization Conversion-0kbFQerI86k.en.vtt 941 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-dGS0SKu1ox0.ja.vtt 940 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.en.vtt 940 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/06. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939 B
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-1N3_RnTDFqU.en.vtt 938 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.pt-BR.vtt 937 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size-P4LwoQyJSMk.zh-CN.vtt 936 B
    Part 01-Module 04-Lesson 04_Advanced Lane Finding Project/01. 02 Computer Vision A02 Becoming An Expert--ZIJqfTk8mg.en.vtt 936 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-zc_GQiISQ3E.en.vtt 936 B
    Part 03-Module 05-Lesson 02_Introduction to ROS/02. L2 01 L ROS And Carla--G-kEnQWKgY.zh-CN.vtt 935 B
    Part 03-Module 02-Lesson 01_Search/12. Expansion Grid Solution - Artificial Intelligence for Robotics-pH6sDfBalaw.zh-CN.vtt 935 B
    Part 01-Module 03-Lesson 09_Transfer Learning/17. Alexnet Today-AItZPkRHH_I.en.vtt 935 B
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.zh-CN.vtt 935 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-w-czJptEyBk.zh-CN.vtt 935 B
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-dBA94pR6JYw.zh-CN.vtt 934 B
    Part 02-Module 04-Lesson 03_Vehicle Models/03. State-6vFczwAYjsU.en.vtt 934 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size-P4LwoQyJSMk.en.vtt 933 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-iZYv1WdWwQo.zh-CN.vtt 931 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.ru.vtt 929 B
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-7CNEY8lRrGE.en.vtt 929 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-fRYtUP0P4Lg.ja.vtt 928 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-TEAGqUkQVdM.ja.vtt 927 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-sCZI5gWS6mg.ar.vtt 926 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.ja.vtt 925 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/27. Transition Overfitting - Dataset Size-Lmxem7ud9yk.zh-CN.vtt 925 B
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.en.vtt 923 B
    Part 02-Module 04-Lesson 01_PID Control/05. Implement P Controller Solution - Artificial Intelligence for Robotics-wvdFPAOCb64.ru.vtt 922 B
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--HQf6pkcebQ.en.vtt 921 B
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--HQf6pkcebQ.ja.vtt 920 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif 919 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz - Cross 1--xxrisIvD0E.en.vtt 918 B
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-7CNEY8lRrGE.ja.vtt 918 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.es-MX.vtt 917 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM-gnAmmyQ_ZcQ.ja.vtt 917 B
    Part 01-Module 04-Lesson 07_Decision Trees/11. Min Samples Split-Mt5TWGYacJs.pt-BR.vtt 916 B
    Part 02-Module 02-Lesson 02_Kalman Filters/26. Conclusion-6kFMxhlfHuI.ja.vtt 916 B
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/13. Trigonometry And Vehicle Motion-WY3T-9GHI_0.en.vtt 914 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-dGS0SKu1ox0.pt-BR.vtt 913 B
    Part 02-Module 04-Lesson 03_Vehicle Models/10. Errors-qtg_HiqoGHY.zh-CN.vtt 913 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/02. Intro To Deep Neural Networks-SXtXg_BB4lI.pt-BR.vtt 912 B
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-_AAkw_fynwc.zh-CN.vtt 909 B
    Part 02-Module 03-Lesson 05_Particle Filters/04. Efficiency-7CNEY8lRrGE.zh-CN.vtt 909 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/12. Let's make a deal-l1xMgirpwCU.zh-CN.vtt 907 B
    Part 03-Module 03-Lesson 03_Scene Understanding/03. Semantic Segmentation-_L5gJnZrw48.en.vtt 905 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-EllzeBecnkU.pt-BR.vtt 904 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/12. NB Decision Boundary in Python-pauohSxuCVs.zh-CN.vtt 904 B
    Part 02-Module 04-Lesson 03_Vehicle Models/17. Vehicle Models Outro-DqKw_m3Uxr0.zh-CN.vtt 904 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/21. SVM C Parameter-WVg5-vxQDm8.zh-CN.vtt 902 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-4qJwfAWG_wQ.pt-BR.vtt 902 B
    Part 06-Module 01-Lesson 05_Trees/01. Trees-PXie7f22v2Q.en-US.vtt 900 B
    Part 06-Module 01-Lesson 08_Technical Interviewing Techniques/06. Runtime Analysis-8bI9OgOB2qI.zh-CN.vtt 900 B
    Part 03-Module 03-Lesson 04_Inference Performance/02. Why Bother With Performance-pCg0q8qmgsk.zh-CN.vtt 899 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian--9AVZ-N_gbM.en.vtt 898 B
    Part 06-Module 01-Lesson 05_Trees/01. Trees-PXie7f22v2Q.en.vtt 897 B
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.pt-BR.vtt 897 B
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.en.vtt 897 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.es-ES.vtt 897 B
    Part 03-Module 03-Lesson 03_Scene Understanding/04. Scene Understanding-aMQREc-mP50.en.vtt 896 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.ja.vtt 896 B
    Part 06-Module 01-Lesson 05_Trees/01. Trees-PXie7f22v2Q.pt-BR.vtt 895 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-osn2fVnCVgQ.en.vtt 895 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.es.vtt 895 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.pt-BR.vtt 895 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-zc_GQiISQ3E.zh-CN.vtt 894 B
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-ajOKsQLxoJI.ja.vtt 894 B
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-1N3_RnTDFqU.ja.vtt 893 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-osn2fVnCVgQ.pt-BR.vtt 893 B
    Part 02-Module 03-Lesson 01_Introduction to Localization/06. Overview of the Lessons-KzvW0gkYOgo.zh-CN.vtt 893 B
    Part 01-Module 03-Lesson 06_LeNet for Traffic Signs/08. LeNet Testing-NHoyQSZNWA4.en.vtt 892 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.ru.vtt 891 B
    Part 02-Module 02-Lesson 02_Kalman Filters/15. New Mean and Variance-SwxRWZaC1FM.zh-CN.vtt 891 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-TEAGqUkQVdM.pt-BR.vtt 890 B
    Part 01-Module 03-Lesson 09_Transfer Learning/29. Outro-WOrM6qopj7A.zh-CN.vtt 887 B
    Part 02-Module 03-Lesson 03_Markov Localization/23. ND013 M4 L3 15.5 Q Noise In Motion Model-zRbT36RTlhs.en.vtt 885 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-n9_th4V4qE4.en.vtt 884 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian--9AVZ-N_gbM.es-ES.vtt 884 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/23. Overfitting-plx_F2BkwNQ.zh-CN.vtt 884 B
    Part 02-Module 03-Lesson 03_Markov Localization/41. Conclusion-3npZxfdrOpY.en.vtt 884 B
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-ajOKsQLxoJI.en.vtt 883 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.pt-PT.vtt 881 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-n9_th4V4qE4.ja.vtt 881 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes-nQsYfzO7-00.en.vtt 879 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.pt-BR.vtt 879 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.pt.vtt 878 B
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/07. Color Spaces-mhILAhzgPRE.en.vtt 874 B
    Part 02-Module 03-Lesson 03_Markov Localization/01. 05 Localization A02 A Return To Bayes Ruls-7FgzbyeJCp8.en.vtt 874 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.ja.vtt 874 B
    Part 03-Module 02-Lesson 01_Search/15. Implement A-V0Ppaw5G2Pg.ja.vtt 874 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-QCnPJcNprEU.zh-CN.vtt 874 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-dGS0SKu1ox0.en.vtt 874 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature--_jNi_5zEEQ.pt-BR.vtt 873 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.it.vtt 871 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-fRYtUP0P4Lg.es-ES.vtt 869 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes-nQsYfzO7-00.pt-BR.vtt 869 B
    Part 02-Module 03-Lesson 05_Particle Filters/11. Robot World-qq5h-Xw4DGg.ja.vtt 869 B
    Part 03-Module 02-Lesson 03_Behavior Planning/23. Toby Ben Outro-Hzk5-lezrJk.en.vtt 866 B
    Part 01-Module 03-Lesson 08_Keras/02. Introduction--DZ5OI2uCzU.zh-CN.vtt 864 B
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.pt-BR.vtt 862 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/07. Traveling Salesman Problem-9ruR5Ux63QU.zh-CN.vtt 862 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.ar.vtt 861 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.pt-PT.vtt 861 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-PsyqM704q2Y.ja.vtt 859 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.pt.vtt 858 B
    Part 03-Module 03-Lesson 04_Inference Performance/11. Quantization Conversion-0kbFQerI86k.zh-CN.vtt 858 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-qnfVoUChRlQ.zh-CN.vtt 858 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian--9AVZ-N_gbM.ja.vtt 857 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-4qJwfAWG_wQ.en.vtt 857 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.en.vtt 856 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/08. L1 13 L Control Subsystem-ESIz-aSjklY.en.vtt 854 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons-svA0HOjFFl0.pt-BR.vtt 854 B
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/01. L5 01 L Introduction-wBKlo2Lk_A0.zh-CN.vtt 854 B
    Part 02-Module 04-Lesson 03_Vehicle Models/15. Dynamic Models - Part 4 Tire Models-OFIL0yqsV7o.zh-CN.vtt 853 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-gbkORDbJM50.ja.vtt 853 B
    Part 01-Module 04-Lesson 02_Gradients and Color Spaces/07. Color Spaces-mhILAhzgPRE.zh-CN.vtt 851 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.es-ES.vtt 851 B
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/01. Introduction-qA6Za_Pt5d0.en.vtt 850 B
    Part 01-Module 04-Lesson 01_Camera Calibration/01. 02 Computer Vision A01 The Challenges With Cameras-n2RSEjPn814.en.vtt 850 B
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/07. Transposed Convolutions-K6mlLX8ZZDs.zh-CN.vtt 850 B
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/08. Kalman Filter Equations In C++ Programming-smRjTGQG2SY.zh-CN.vtt 849 B
    Part 06-Module 01-Lesson 07_Case Studies in Algorithms/01. Case Study Introduction-r8uEDyBylHY.zh-CN.vtt 849 B
    Part 02-Module 03-Lesson 01_Introduction to Localization/03. Localization Intuition-mVCSCU67D80.en.vtt 848 B
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/07. L5 14 L Outro-sIe4SZfDUmM.en.vtt 847 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-fRYtUP0P4Lg.en.vtt 846 B
    Part 03-Module 03-Lesson 04_Inference Performance/03. L3 03 L Semantic Segmentation Revisited-xFcI26kLtiY.en.vtt 846 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-TEAGqUkQVdM.en.vtt 846 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/31. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.en-US.vtt 845 B
    Part 01-Module 04-Lesson 07_Decision Trees/10. Decision Tree Parameters-Is5T4alCCGQ.zh-CN.vtt 845 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/26. Assignment Predict Radar Measurement-GYQeizoj09E.zh-CN.vtt 844 B
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/01. L6 01 L Intro-urgjYwIY3hs.zh-CN.vtt 844 B
    Part 03-Module 03-Lesson 03_Scene Understanding/04. Scene Understanding-aMQREc-mP50.zh-CN.vtt 844 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-EllzeBecnkU.en.vtt 843 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-OXIESpN0KaE.ru.vtt 843 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/02. Intro To Deep Neural Networks-SXtXg_BB4lI.en.vtt 842 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-znlTyocTgSc.ja.vtt 842 B
    Part 02-Module 04-Lesson 03_Vehicle Models/12. Dynamic Models - Part 1 Forces-KRN7GVJkFnU.zh-CN.vtt 841 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/04. Maximizing the Margin-otAraUuSrJo.en.vtt 837 B
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-1N3_RnTDFqU.zh-CN.vtt 836 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.bn.vtt 833 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/10. ChainRule-DxOg_olir0k.pt-BR.vtt 833 B
    Part 02-Module 04-Lesson 03_Vehicle Models/03. State-6vFczwAYjsU.zh-CN.vtt 832 B
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.es-MX.vtt 832 B
    Part 02-Module 04-Lesson 01_PID Control/03. Proportional Control - Artificial Intelligence for Robotics-gGo-gSFqYqg.ja.vtt 831 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-WxAO6ByCvew.ar.vtt 830 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.bn.vtt 830 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-PsyqM704q2Y.es-ES.vtt 829 B
    Part 02-Module 04-Lesson 04_Model Predictive Control/03. Dealing With Stopping-2gkRWj7KIMU.en.vtt 829 B
    Part 03-Module 02-Lesson 01_Search/15. Implement A-V0Ppaw5G2Pg.en.vtt 827 B
    Part 02-Module 03-Lesson 03_Markov Localization/12. 03.5 S How Much Data-PQV6gWuyVOs.en.vtt 827 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/01. 03 Deep Learning A05 Deep Learning Foundations-Fw6cM2mpfcs.en.vtt 826 B
    Part 03-Module 02-Lesson 05_Path Planning Project/01. 06 Path Planning A02 Planning Is Hard-15yIDPNbmWc.en.vtt 826 B
    Part 03-Module 02-Lesson 03_Behavior Planning/23. Toby Ben Outro-Hzk5-lezrJk.zh-CN.vtt 826 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.pt-PT.vtt 825 B
    Part 01-Module 03-Lesson 02_MiniFlow/01. Introduction to MiniFlow-FxmB3Q308h0.en.vtt 825 B
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-d_DXbkU7iPY.ja.vtt 825 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/24. Numerical Stability-_SbGcOS-jcQ.pt-BR.vtt 823 B
    Part 01-Module 03-Lesson 09_Transfer Learning/17. Alexnet Today-AItZPkRHH_I.zh-CN.vtt 822 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.pt.vtt 822 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian--9AVZ-N_gbM.zh-CN.vtt 821 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-DV2cX9W0tT8.es-ES.vtt 819 B
    Part 02-Module 03-Lesson 03_Markov Localization/41. Conclusion-3npZxfdrOpY.zh-CN.vtt 818 B
    Part 01-Module 04-Lesson 07_Decision Trees/01. Welcome To Decision Trees-5eAHVk1-Hz0.zh-CN.vtt 817 B
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.pt-BR.vtt 817 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/08. CTRV Process Noise Effect Last 3-DUm8e7K8qZ8.zh-CN.vtt 817 B
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/16. L4 01 L Outro-LwI4UmDGLeM.en.vtt 815 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/19. Congrats on Learning Naive Bayes-nQsYfzO7-00.zh-CN.vtt 814 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/25. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature--_jNi_5zEEQ.en.vtt 813 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-ZwMY5rAAd7Q.ar.vtt 812 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature--_jNi_5zEEQ.ja.vtt 812 B
    Part 01-Module 04-Lesson 08_Object Detection/06. Features-u3NOabeuMjA.en.vtt 811 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.it.vtt 810 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.it.vtt 810 B
    Part 02-Module 02-Lesson 01_Introduction and Sensors/05. Live Data Walkthrough-zXu6y0aNfjk.en.vtt 810 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.es-ES.vtt 809 B
    Part 03-Module 02-Lesson 03_Behavior Planning/10. 09 Q InputsToTransitionFunctions-8jStt2d_SYc.en.vtt 809 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.zh-CN.vtt 806 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.es.vtt 806 B
    Part 03-Module 03-Lesson 03_Scene Understanding/13. Outro-vyNI5hdMigs.en.vtt 805 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/19. Error Functions-YfUUunxWIJw.pt-BR.vtt 804 B
    Part 02-Module 03-Lesson 03_Markov Localization/23. ND013 M4 L3 15.5 Q Noise In Motion Model-zRbT36RTlhs.zh-CN.vtt 804 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/06. L1 08 L Planning Subsystem-MxG9DtKiSqM.zh-CN.vtt 804 B
    Part 03-Module 05-Lesson 03_Packages & Catkin Workspaces/01. 08 System Integration A04 ROS At Stanford-YxbwPjGylI8.en.vtt 802 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.pt-BR.vtt 802 B
    Part 02-Module 03-Lesson 05_Particle Filters/11. Robot World-qq5h-Xw4DGg.en.vtt 800 B
    Part 03-Module 02-Lesson 03_Behavior Planning/10. 09 Q InputsToTransitionFunctions-8jStt2d_SYc.zh-CN.vtt 799 B
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-d_DXbkU7iPY.zh-CN.vtt 799 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-6tV5NY1HoNA.en.vtt 798 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-gbkORDbJM50.en.vtt 798 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-gbkORDbJM50.pt-BR.vtt 798 B
    Part 02-Module 02-Lesson 02_Kalman Filters/26. Conclusion-6kFMxhlfHuI.zh-CN.vtt 797 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM-gnAmmyQ_ZcQ.pt-BR.vtt 797 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-EllzeBecnkU.zh-CN.vtt 797 B
    Part 02-Module 03-Lesson 05_Particle Filters/25. Filters-d_DXbkU7iPY.en.vtt 796 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.zh-CN.vtt 795 B
    Part 02-Module 04-Lesson 01_PID Control/03. Proportional Control - Artificial Intelligence for Robotics-gGo-gSFqYqg.en.vtt 795 B
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-ajOKsQLxoJI.zh-CN.vtt 794 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/23. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.en-US.vtt 793 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-swoZxkrxIB0.ar.vtt 793 B
    Part 02-Module 02-Lesson 01_Introduction and Sensors/05. Live Data Walkthrough-zXu6y0aNfjk.zh-CN.vtt 792 B
    Part 04-Module 03-Lesson 01_Craft Your Cover Letter/06. Write the Conclusion-i3ozyhGPmIg.en.vtt 791 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/19. Error Functions-YfUUunxWIJw.en.vtt 790 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.es-ES.vtt 789 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-n9_th4V4qE4.zh-CN.vtt 788 B
    Part 01-Module 03-Lesson 08_Keras/04. High Level Frameworks-ThmsQxazSvM.en.vtt 787 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.es.vtt 787 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.en.vtt 786 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/04. Maximizing the Margin-otAraUuSrJo.zh-CN.vtt 786 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.it.vtt 785 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.en.vtt 784 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.ar.vtt 783 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.ja.vtt 783 B
    Part 01-Module 04-Lesson 08_Object Detection/23. Build a Classifier-YUCFFNC7tw4.en.vtt 782 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-4qJwfAWG_wQ.zh-CN.vtt 780 B
    Part 01-Module 03-Lesson 07_Traffic Sign Classifier Project/01. 03 Deep Learning A03 Starting With Neural Networks-TgRhLmHRvfE.en.vtt 780 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.zh-CN.vtt 779 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-dGS0SKu1ox0.zh-CN.vtt 779 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/02. Intro To Deep Neural Networks-SXtXg_BB4lI.zh-CN.vtt 779 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-osn2fVnCVgQ.zh-CN.vtt 778 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-lfZg7j5W7u8.zh-CN.vtt 778 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/16. Outro-dps7Ti6Lado.en.vtt 777 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/31. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.zh-CN.vtt 777 B
    Part 02-Module 04-Lesson 03_Vehicle Models/07. Following Trajectories-sOSHaAf_7b8.zh-CN.vtt 776 B
    Part 02-Module 04-Lesson 01_PID Control/08. PD Controller Solution - Artificial Intelligence for Robotics-YgomQgfFlTQ.ja.vtt 776 B
    Part 02-Module 04-Lesson 03_Vehicle Models/13. Dynamic Models - Part 2 Slip Angle-oDusBbn820k.zh-CN.vtt 775 B
    Part 02-Module 03-Lesson 05_Particle Filters/13. Robot Particles--HQf6pkcebQ.zh-CN.vtt 774 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.ru.vtt 774 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-PsyqM704q2Y.en.vtt 773 B
    Part 02-Module 02-Lesson 05_Extended Kalman Filter Project/01. 04 Sensor Fusion A03 Back To Bayes Theorem-wel0ggSIT54.en.vtt 772 B
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/13. Trigonometry And Vehicle Motion-WY3T-9GHI_0.zh-CN.vtt 772 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-znlTyocTgSc.pt-BR.vtt 772 B
    Part 03-Module 03-Lesson 05_Semantic Segmentation Project/01. Introduction-qA6Za_Pt5d0.zh-CN.vtt 770 B
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.en-US.vtt 770 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM-gnAmmyQ_ZcQ.en.vtt 770 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-znlTyocTgSc.en.vtt 770 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/31. 29 L Optimizing A Logistic Classifier-U_7nO1dm2tY.pt-BR.vtt 769 B
    Part 01-Module 04-Lesson 08_Object Detection/23. Build a Classifier-YUCFFNC7tw4.zh-CN.vtt 768 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/12. Participating in open source projects-OxL-gMTizUA.ar.vtt 768 B
    Part 01-Module 03-Lesson 02_MiniFlow/01. Introduction to MiniFlow-FxmB3Q308h0.zh-CN.vtt 768 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-fRYtUP0P4Lg.zh-CN.vtt 767 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-SW_wvez0izo.zh-CN.vtt 767 B
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.en.vtt 767 B
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/24. Evaluating The Performance-1iVBYQ_KWXk.en.vtt 765 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons-svA0HOjFFl0.zh-CN.vtt 765 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/24. Numerical Stability-_SbGcOS-jcQ.en-US.vtt 764 B
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/16. L4 01 L Outro-LwI4UmDGLeM.zh-CN.vtt 764 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-2-GirRl7TqU.pt-BR.vtt 763 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-DV2cX9W0tT8.en.vtt 762 B
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-7-yOaHVeATk.ru.vtt 761 B
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.zh-Hans.vtt 760 B
    Part 04-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.pt-BR.vtt 760 B
    Part 03-Module 03-Lesson 03_Scene Understanding/03. Semantic Segmentation-_L5gJnZrw48.zh-CN.vtt 758 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-sCZI5gWS6mg.ja.vtt 758 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-sCZI5gWS6mg.en.vtt 757 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-ge_-o0RfrgM.ja.vtt 757 B
    Part 02-Module 03-Lesson 03_Markov Localization/24. Noise In Motion Model Solution-zJ9NWz7IlOM.en.vtt 756 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.en.vtt 756 B
    Part 02-Module 03-Lesson 02_Localization Overview/35. Coin Flip Quiz-hzDsYZ61D5M.ja.vtt 755 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-gbkORDbJM50.zh-CN.vtt 752 B
    Part 02-Module 03-Lesson 01_Introduction to Localization/03. Localization Intuition-mVCSCU67D80.zh-CN.vtt 751 B
    Part 02-Module 03-Lesson 07_Kidnapped Vehicle Project/01. 05 Localization A01 Sparse Localization-DBZ7QdXPldc.en.vtt 749 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature--_jNi_5zEEQ.zh-CN.vtt 749 B
    Part 02-Module 03-Lesson 03_Markov Localization/12. 03.5 S How Much Data-PQV6gWuyVOs.zh-CN.vtt 748 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/07. SVM Response to Outliers-TEAGqUkQVdM.zh-CN.vtt 748 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.zh-CN.vtt 747 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons-svA0HOjFFl0.en-US.vtt 747 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/09. No Neurons-svA0HOjFFl0.en.vtt 745 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-qFswCrEUZSM.ru.vtt 744 B
    Part 01-Module 03-Lesson 08_Keras/04. High Level Frameworks-ThmsQxazSvM.zh-CN.vtt 743 B
    Part 06-Module 01-Lesson 05_Trees/01. Trees-PXie7f22v2Q.zh-CN.vtt 742 B
    Part 02-Module 03-Lesson 05_Particle Filters/11. Robot World-qq5h-Xw4DGg.zh-CN.vtt 740 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/19. Error Functions-YfUUunxWIJw.zh-CN.vtt 739 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/03. Color-Question-BdQccpMwk80.en.vtt 739 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-sCZI5gWS6mg.pt-BR.vtt 739 B
    Part 02-Module 03-Lesson 03_Markov Localization/11. Quiz How Much Data-wzcFHAf-9lo.en.vtt 737 B
    Part 03-Module 02-Lesson 01_Search/15. Implement A-V0Ppaw5G2Pg.zh-CN.vtt 737 B
    Part 02-Module 03-Lesson 03_Markov Localization/24. Noise In Motion Model Solution-zJ9NWz7IlOM.zh-CN.vtt 730 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.en.vtt 728 B
    Part 01-Module 04-Lesson 08_Object Detection/06. Features-u3NOabeuMjA.zh-CN.vtt 727 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-ge_-o0RfrgM.en.vtt 725 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.bn.vtt 725 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/02. CTRV-g72HXEcSQHU.en.vtt 724 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.it.vtt 724 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/16. Outro-dps7Ti6Lado.zh-CN.vtt 723 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.ja.vtt 722 B
    Part 02-Module 04-Lesson 01_PID Control/03. Proportional Control - Artificial Intelligence for Robotics-gGo-gSFqYqg.zh-CN.vtt 721 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.bn.vtt 713 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-DV2cX9W0tT8.zh-CN.vtt 711 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/08. L1 13 L Control Subsystem-ESIz-aSjklY.zh-CN.vtt 710 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/23. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.zh-CN.vtt 709 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.ja.vtt 708 B
    Part 03-Module 03-Lesson 03_Scene Understanding/13. Outro-vyNI5hdMigs.zh-CN.vtt 708 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-QAqsIWVVX0Y.es-ES.vtt 708 B
    Part 04-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.es-MX.vtt 707 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/23. 17 L Transition Into Practical Aspects Of Learning-bKqkRFOOKoA.pt-BR.vtt 707 B
    Part 02-Module 04-Lesson 04_Model Predictive Control/03. Dealing With Stopping-2gkRWj7KIMU.zh-CN.vtt 707 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/19. One-Hot Encoding-phYsxqlilUk.en.vtt 707 B
    Part 03-Module 03-Lesson 04_Inference Performance/03. L3 03 L Semantic Segmentation Revisited-xFcI26kLtiY.zh-CN.vtt 706 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.pt-PT.vtt 705 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-ZwMY5rAAd7Q.pt-BR.vtt 705 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.pt.vtt 702 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-daVA3PI2E6o.zh-CN.vtt 701 B
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-_37pf6lV15s.ja.vtt 700 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.pt-PT.vtt 698 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-DV2cX9W0tT8.ja.vtt 697 B
    Part 01-Module 04-Lesson 07_Decision Trees/14. Minimizing Impurity in Splitting-L6J6BRFgDiI.pt-BR.vtt 697 B
    Part 02-Module 04-Lesson 01_PID Control/08. PD Controller Solution - Artificial Intelligence for Robotics-YgomQgfFlTQ.en.vtt 697 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.pt-BR.vtt 696 B
    Part 02-Module 02-Lesson 02_Kalman Filters/10. Predicting the Peak-PsyqM704q2Y.zh-CN.vtt 696 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.pt.vtt 696 B
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/16. L6 24 L Module Outro-QT-4yIV9dEM.en.vtt 695 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.es-ES.vtt 695 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.it.vtt 695 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.es.vtt 693 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-2-GirRl7TqU.ja-JP.vtt 693 B
    Part 03-Module 04-Lesson 06_Functional Safety Technical Safety Concept/07. L5 14 L Outro-sIe4SZfDUmM.zh-CN.vtt 692 B
    Part 06-Module 01-Lesson 01_Introduction and Efficiency/04. Syntax-08M93RaBSgU.zh-CN.vtt 692 B
    Part 02-Module 04-Lesson 03_Vehicle Models/14. Dynamic Models - Part 3 Slip Ratio-kSqOJDwRFVc.en.vtt 689 B
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-_37pf6lV15s.en.vtt 688 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-QAqsIWVVX0Y.ja.vtt 688 B
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/01. 04 Sensor Fusion A04 Kalman Filters In C++-Hsvzm7zDG_A.en.vtt 686 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.pt-PT.vtt 685 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.bn.vtt 684 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-mQtjczyAxQs.es-ES.vtt 684 B
    Part 03-Module 05-Lesson 02_Introduction to ROS/01. 08 System Integration A03 Communication Between Systems-a9hYIvymlkQ.en.vtt 684 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/03. Color-Question-BdQccpMwk80.pt-BR.vtt 683 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.pt.vtt 682 B
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/01. L6 25 L Project Outro-k3tl3pkGBa8.en.vtt 680 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/11. Reflect on your commit messages-_0AHmKkfjTo.ar.vtt 678 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/10. ChainRule-DxOg_olir0k.en.vtt 677 B
    Part 04-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.zh-CN.vtt 675 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.en.vtt 675 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.es-ES.vtt 673 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-ge_-o0RfrgM.zh-CN.vtt 670 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.ar.vtt 669 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes-2_dJXh1qqe0.ar.vtt 669 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/20. Kernel and Gamma-znlTyocTgSc.zh-CN.vtt 664 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.ja.vtt 664 B
    Part 04-Module 01-Lesson 01_Conduct a Job Search/04. Open Yourself Up to Opportunity-1OamTNkk1xM.en.vtt 663 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/23. Assignement Predicted Mean And Covariance-0vl_wfDpVec.en.vtt 663 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Question-lp1NrLZnCUM.pt-BR.vtt 663 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/24. Numerical Stability-_SbGcOS-jcQ.zh-CN.vtt 663 B
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-NhKyyhNl70A.ja.vtt 663 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.en.vtt 659 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/19. One-Hot Encoding-phYsxqlilUk.pt-BR.vtt 657 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.en.vtt 656 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-QAqsIWVVX0Y.en.vtt 654 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.ru.vtt 653 B
    Part 03-Module 04-Lesson 07_Functional Safety at the Software and Hardware Levels/16. L6 24 L Module Outro-QT-4yIV9dEM.zh-CN.vtt 652 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/05. L1 07 L Components Inputs Wrapup-f3qloIYf16k.en.vtt 652 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-mQtjczyAxQs.en.vtt 651 B
    Part 02-Module 04-Lesson 01_PID Control/08. PD Controller Solution - Artificial Intelligence for Robotics-YgomQgfFlTQ.zh-CN.vtt 647 B
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/20. Jacobian Matrix-pRhuwlMhG3o.en.vtt 646 B
    Part 02-Module 03-Lesson 04_Motion Models/10. Lesson Outro-a_FvfH8OcPg.en.vtt 646 B
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.ar.vtt 644 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.it.vtt 644 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/18. Regularization-Quiz-E0eEW6V0_sA.pt-BR.vtt 643 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/01. Welcome to SVM-gnAmmyQ_ZcQ.zh-CN.vtt 643 B
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-SK3cnmu8BYU.es-ES.vtt 643 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.pt-PT.vtt 641 B
    Part 02-Module 03-Lesson 02_Localization Overview/15. Multiple Measurements-gDO4sF8gR9k.pt.vtt 639 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/18. Regularization-Quiz-E0eEW6V0_sA.en-US.vtt 638 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size--2XvoG6WD9k.pt-BR.vtt 638 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.ru.vtt 636 B
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/01. 01 Introduction A01 Power Of Cameras-lCPWJEEzUeo.en.vtt 635 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-ZwMY5rAAd7Q.en.vtt 634 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/34. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes-2_dJXh1qqe0.ja.vtt 632 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-swoZxkrxIB0.ja.vtt 632 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.it.vtt 631 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.ar.vtt 631 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.en.vtt 630 B
    Part 02-Module 04-Lesson 01_PID Control/05. Implement P Controller Solution - Artificial Intelligence for Robotics-wvdFPAOCb64.en.vtt 630 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.zh-CN.vtt 630 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-WxAO6ByCvew.ja.vtt 628 B
    Part 02-Module 03-Lesson 05_Particle Filters/09. Moving Robot-_37pf6lV15s.zh-CN.vtt 627 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.ja.vtt 627 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/02. CTRV-g72HXEcSQHU.zh-CN.vtt 626 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.zh-CN.vtt 626 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-8cIlVoH5dhw.ja-JP.vtt 624 B
    Part 02-Module 03-Lesson 03_Markov Localization/11. Quiz How Much Data-wzcFHAf-9lo.zh-CN.vtt 624 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/34. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.zh-CN.vtt 623 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-UX3W8TUKbJ0.ja.vtt 623 B
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-Lwn6FJgyyYI.es-ES.vtt 622 B
    Part 03-Module 03-Lesson 04_Inference Performance/01. Intro-dK5Yn3sq5RM.en.vtt 622 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-mQtjczyAxQs.ja.vtt 621 B
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/24. Evaluating The Performance-1iVBYQ_KWXk.zh-CN.vtt 620 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.es-MX.vtt 619 B
    Part 02-Module 04-Lesson 04_Model Predictive Control/11. Model Predictive Control Outro-iEdMInAsjgM.en.vtt 619 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.es-ES.vtt 618 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.es.vtt 616 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.ja.vtt 614 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/03. Color-Question-BdQccpMwk80.zh-CN.vtt 612 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.ja.vtt 611 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.en.vtt 610 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.ja.vtt 610 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/10. ChainRule-DxOg_olir0k.zh-CN.vtt 609 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/07. Quick Fixes #2-It6AEuSDQw0.ar.vtt 608 B
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-TGdMG81hXc8.es-ES.vtt 608 B
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-NhKyyhNl70A.en.vtt 607 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/19. One-Hot Encoding-phYsxqlilUk.zh-CN.vtt 607 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. Formula For Cross 1-qvr_ego_d6w.en.vtt 607 B
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-SK3cnmu8BYU.en.vtt 604 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-2-GirRl7TqU.en.vtt 603 B
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-SK3cnmu8BYU.ja.vtt 603 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-yVh0lVlerWs.ru.vtt 603 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.pt-PT.vtt 603 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.ar.vtt 602 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.pt.vtt 600 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/34. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600 B
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. 12 - More Data Collection-cCZNlX3KLnY.zh-CN.vtt 600 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-OXIESpN0KaE.en.vtt 598 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.ar.vtt 597 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.en.vtt 596 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Question-lp1NrLZnCUM.en.vtt 594 B
    Part 02-Module 03-Lesson 04_Motion Models/10. Lesson Outro-a_FvfH8OcPg.zh-CN.vtt 594 B
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-0FmTokjoRgo.ja.vtt 592 B
    Part 02-Module 03-Lesson 02_Localization Overview/17. Exact Motion-Iky7rJXQU_4.zh-CN.vtt 589 B
    Part 02-Module 04-Lesson 01_PID Control/05. Implement P Controller Solution - Artificial Intelligence for Robotics-wvdFPAOCb64.ja.vtt 589 B
    Part 02-Module 03-Lesson 02_Localization Overview/03. Total Probability-n1EacrqyCs8.pl.vtt 588 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.ar.vtt 588 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-sCZI5gWS6mg.zh-CN.vtt 587 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584 B
    Part 01-Module 03-Lesson 10_Behavioral Cloning Project/16. 12 - More Data Collection-cCZNlX3KLnY.en.vtt 583 B
    Part 02-Module 04-Lesson 01_PID Control/05. Implement P Controller Solution - Artificial Intelligence for Robotics-wvdFPAOCb64.zh-CN.vtt 582 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.es-ES.vtt 582 B
    Part 02-Module 02-Lesson 04_Lidar and Radar Fusion with Kalman Filters in C++/20. Jacobian Matrix-pRhuwlMhG3o.zh-CN.vtt 580 B
    Part 02-Module 04-Lesson 01_PID Control/06. Oscillations - Artificial Intelligence for Robotics-CO3zjkxBaIc.ru.vtt 580 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.es.vtt 579 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-WxAO6ByCvew.en.vtt 579 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-WxAO6ByCvew.pt-BR.vtt 577 B
    Part 02-Module 04-Lesson 04_Model Predictive Control/11. Model Predictive Control Outro-iEdMInAsjgM.zh-CN.vtt 576 B
    Part 03-Module 04-Lesson 08_Elective Project Functional Safety/01. L6 25 L Project Outro-k3tl3pkGBa8.zh-CN.vtt 576 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-QAqsIWVVX0Y.zh-CN.vtt 575 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.es-ES.vtt 575 B
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-NhKyyhNl70A.zh-CN.vtt 574 B
    Part 02-Module 02-Lesson 02_Kalman Filters/21. Kalman Filter Prediciton-SK3cnmu8BYU.zh-CN.vtt 573 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.es.vtt 573 B
    Part 03-Module 05-Lesson 04_Writing ROS Nodes/01. 08 System Integration A05 Closing In-mFoFGT9AtfQ.en.vtt 573 B
    Part 03-Module 03-Lesson 04_Inference Performance/16. Outro-jMSB5_P_fss.en.vtt 572 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-mQtjczyAxQs.zh-CN.vtt 572 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/01. 03 Deep Learning A06 CNNs Have Taken Over-yNOHThuy2UU.en.vtt 572 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.pt-PT.vtt 570 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-swoZxkrxIB0.pt-BR.vtt 568 B
    Part 01-Module 04-Lesson 07_Decision Trees/22. Information Gain Calculation Part 1-erdekkpG-Do.pt-BR.vtt 568 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1--F2gJXWbN6s.zh-CN.vtt 567 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.pt.vtt 567 B
    Part 03-Module 03-Lesson 03_Scene Understanding/01. Intro-z036GNuoiBk.en.vtt 565 B
    Part 02-Module 02-Lesson 06_Unscented Kalman Filters/23. Assignement Predicted Mean And Covariance-0vl_wfDpVec.zh-CN.vtt 565 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-PxE2bbG2Hkw.ar.vtt 563 B
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-HmcurWkA0fQ.ja.vtt 562 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-OXIESpN0KaE.zh-CN.vtt 561 B
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-Lwn6FJgyyYI.en.vtt 561 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.pt-BR.vtt 560 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/18. Regularization-Quiz-E0eEW6V0_sA.zh-CN.vtt 557 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-ZwMY5rAAd7Q.zh-CN.vtt 556 B
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-5vdbYPc7tWw.en.vtt 556 B
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-2BfisMbu86o.es-ES.vtt 556 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/08. Feature-Map-Sizes-Question-lp1NrLZnCUM.zh-CN.vtt 555 B
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-0FmTokjoRgo.es-ES.vtt 554 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-swoZxkrxIB0.zh-CN.vtt 553 B
    Part 01-Module 04-Lesson 07_Decision Trees/04. Constructing a Decision Tree First Split-GMe5JT2_oUE.zh-CN.vtt 552 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.it.vtt 551 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/12. Participating in open source projects-OxL-gMTizUA.pt-BR.vtt 551 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-swoZxkrxIB0.en.vtt 549 B
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-TGdMG81hXc8.en.vtt 549 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548 B
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-HmcurWkA0fQ.es-ES.vtt 548 B
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-WKlm2aO2QGY.ja.vtt 547 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes-2_dJXh1qqe0.pt-BR.vtt 547 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/27. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545 B
    Part 02-Module 04-Lesson 03_Vehicle Models/14. Dynamic Models - Part 3 Slip Ratio-kSqOJDwRFVc.zh-CN.vtt 544 B
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-2BfisMbu86o.en.vtt 543 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size--2XvoG6WD9k.en-US.vtt 543 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-2-GirRl7TqU.zh-CN.vtt 542 B
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-FjRX_i3SsJA.ja.vtt 542 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-U3FUxkm1MxI.ar.vtt 542 B
    Part 03-Module 02-Lesson 01_Search/06. Compute Cost 2-OXIESpN0KaE.ja.vtt 541 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size--2XvoG6WD9k.ja-JP.vtt 541 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.en.vtt 541 B
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-2BfisMbu86o.ja.vtt 540 B
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-FjRX_i3SsJA.en.vtt 540 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size--2XvoG6WD9k.en.vtt 540 B
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-5vdbYPc7tWw.zh-CN.vtt 539 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/08. SVM Outlier Practice-WxAO6ByCvew.zh-CN.vtt 539 B
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-HmcurWkA0fQ.en.vtt 539 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.ar.vtt 538 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/11. Reflect on your commit messages-_0AHmKkfjTo.pt-BR.vtt 538 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/05. L1 07 L Components Inputs Wrapup-f3qloIYf16k.zh-CN.vtt 537 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.ru.vtt 537 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-PxE2bbG2Hkw.ja.vtt 535 B
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-Lwn6FJgyyYI.ja.vtt 534 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-8cIlVoH5dhw.pt-BR.vtt 534 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes-2_dJXh1qqe0.zh-CN.vtt 531 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-qFswCrEUZSM.en.vtt 529 B
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-7-yOaHVeATk.en.vtt 529 B
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-TGdMG81hXc8.ja.vtt 528 B
    Part 03-Module 03-Lesson 04_Inference Performance/01. Intro-dK5Yn3sq5RM.zh-CN.vtt 527 B
    Part 02-Module 02-Lesson 02_Kalman Filters/04. Variance Comparison-TGdMG81hXc8.zh-CN.vtt 526 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.en.vtt 524 B
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/12. Outro-ESIl11NfQ7Q.en.vtt 523 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.es-ES.vtt 522 B
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Nd113 C6 L3 055 L Moving At 53 Degrees Solution V2-Y_3M6eeYbd8.en.vtt 522 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.it.vtt 522 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.ar.vtt 521 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.pt-BR.vtt 520 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.es.vtt 519 B
    Part 02-Module 03-Lesson 02_Localization Overview/12. Sense Function-Y5iFxWRTw1c.bn.vtt 518 B
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-7-yOaHVeATk.ja.vtt 517 B
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-0FmTokjoRgo.en.vtt 517 B
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.pt-BR.vtt 517 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.ja.vtt 516 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.zh-CN.vtt 514 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-qa9B4r5m8wM.zh-CN.vtt 513 B
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-FQEeI3qzaOM.en.vtt 513 B
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/06. region select-ngN9Cr-QfiI.en.vtt 511 B
    Part 03-Module 02-Lesson 01_Search/05. Compute Cost-7-yOaHVeATk.zh-CN.vtt 510 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.zh-CN.vtt 508 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/11. Transition to Using Naive Bayes-2_dJXh1qqe0.en.vtt 507 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.es-MX.vtt 506 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.pt-PT.vtt 506 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.pt.vtt 503 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.en.vtt 503 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.it.vtt 501 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/11. Reflect on your commit messages-_0AHmKkfjTo.en.vtt 501 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-8cIlVoH5dhw.en.vtt 501 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.bn.vtt 500 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.ja.vtt 500 B
    Part 02-Module 03-Lesson 05_Particle Filters/15. Resampling-FjRX_i3SsJA.zh-CN.vtt 500 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.pt-PT.vtt 499 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.ja.vtt 498 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.ar.vtt 496 B
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-WKlm2aO2QGY.zh-CN.vtt 496 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.pt.vtt 496 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/22. Quiz - Softmax-NNoezNnAMTY.en.vtt 495 B
    Part 03-Module 03-Lesson 04_Inference Performance/16. Outro-jMSB5_P_fss.zh-CN.vtt 494 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-i7pRvuVoWg0.ar.vtt 494 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.es-MX.vtt 493 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.ar.vtt 490 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.pt-BR.vtt 489 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.ja.vtt 487 B
    Part 02-Module 03-Lesson 02_Localization Overview/14. Test Sense Function-F8AHaaJVmkw.zh-CN.vtt 487 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.en.vtt 486 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/09. From Scatterplots to Decision Surfaces-DLCq1-kOGX0.zh-CN.vtt 485 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-TkaTTptnYdA.pt-BR.vtt 485 B
    Part 02-Module 03-Lesson 05_Particle Filters/05. Exact or Approximate-WKlm2aO2QGY.en.vtt 485 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-PxE2bbG2Hkw.zh-CN.vtt 484 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-qFswCrEUZSM.ja.vtt 484 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/01. 03 Deep Learning A07 Let'S Go Deeper-SzTpc_EWbDs.en.vtt 484 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-PxE2bbG2Hkw.pt-BR.vtt 484 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.pt-PT.vtt 484 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.pt.vtt 481 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/21. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/07. L1 12 L Planning Subsystem Connections-5c752eVAR3I.en.vtt 480 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-8cIlVoH5dhw.zh-CN.vtt 479 B
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.ja.vtt 478 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.en.vtt 478 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro to CNNs-B61jxZ4rkMs.ja-JP.vtt 477 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/12. Participating in open source projects-OxL-gMTizUA.en.vtt 476 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.it.vtt 476 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.pt-PT.vtt 475 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.ar.vtt 474 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-TkaTTptnYdA.ja-JP.vtt 474 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/11. Reflect on your commit messages-_0AHmKkfjTo.zh-CN.vtt 473 B
    Part 02-Module 02-Lesson 02_Kalman Filters/09. Shifting the Mean-HmcurWkA0fQ.zh-CN.vtt 473 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.en.vtt 473 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-e21oU80gwWc.pt.vtt 472 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.ja.vtt 472 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/42. Conclusion-m8xslYUBXYo.en.vtt 471 B
    Part 01-Module 03-Lesson 03_Introduction to TensorFlow/29. Validation Set Size--2XvoG6WD9k.zh-CN.vtt 471 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/13. Nonlinear Data-PxE2bbG2Hkw.en.vtt 470 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.es-ES.vtt 470 B
    Part 02-Module 04-Lesson 01_PID Control/16. Outro-zF_MUxjCl04.en.vtt 470 B
    Part 03-Module 03-Lesson 03_Scene Understanding/01. Intro-z036GNuoiBk.zh-CN.vtt 469 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.it.vtt 469 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.ja.vtt 469 B
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough - Artificial Intelligence for Robotics-gDbpwPdStlY.ru.vtt 468 B
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.en.vtt 468 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.es.vtt 467 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.ar.vtt 466 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.ja.vtt 466 B
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-FQEeI3qzaOM.ja.vtt 465 B
    Part 02-Module 02-Lesson 02_Kalman Filters/12. Parameter Update 2-2BfisMbu86o.zh-CN.vtt 463 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.es-ES.vtt 463 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.es.vtt 461 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.ja.vtt 461 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-z9crz_gwGCM.ja-JP.vtt 461 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.pt-BR.vtt 461 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-U3FUxkm1MxI.pt-BR.vtt 460 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-qFswCrEUZSM.zh-CN.vtt 458 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.en.vtt 457 B
    Part 02-Module 04-Lesson 01_PID Control/16. Outro-zF_MUxjCl04.zh-CN.vtt 457 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.pt-BR.vtt 457 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.es-ES.vtt 456 B
    Part 02-Module 04-Lesson 01_PID Control/06. Oscillations - Artificial Intelligence for Robotics-CO3zjkxBaIc.ja.vtt 455 B
    Part 02-Module 02-Lesson 02_Kalman Filters/11. Parameter Update-Lwn6FJgyyYI.zh-CN.vtt 455 B
    README.txt 454 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.es.vtt 453 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/07. Quick Fixes #2-It6AEuSDQw0.pt-BR.vtt 453 B
    Part 02-Module 02-Lesson 02_Kalman Filters/14. Separated Gaussians 2-0FmTokjoRgo.zh-CN.vtt 452 B
    Part 03-Module 03-Lesson 02_Fully Convolutional Networks/12. Outro-ESIl11NfQ7Q.zh-CN.vtt 451 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-TkaTTptnYdA.en.vtt 451 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.en.vtt 449 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.ja.vtt 448 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.en.vtt 448 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.pt-PT.vtt 446 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.pt.vtt 443 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-U2yZxIeG2t0.ja.vtt 443 B
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-Z1oQl-1cUeE.en.vtt 441 B
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/07. Nd113 C6 L3 055 L Moving At 53 Degrees Solution V2-Y_3M6eeYbd8.zh-CN.vtt 440 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/12. Participating in open source projects-OxL-gMTizUA.zh-CN.vtt 438 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-sudTOiG-NJo.ar.vtt 438 B
    Part 02-Module 03-Lesson 05_Particle Filters/10. Add Noise-FQEeI3qzaOM.zh-CN.vtt 437 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.pt-BR.vtt 436 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.it.vtt 436 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-GvCSZOR3hLQ.ru.vtt 435 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/07. Quick Fixes #2-It6AEuSDQw0.en.vtt 435 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.en.vtt 435 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/42. Conclusion-m8xslYUBXYo.zh-CN.vtt 434 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-i7pRvuVoWg0.pt-BR.vtt 433 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/03. Number of Parameters-TkaTTptnYdA.zh-CN.vtt 433 B
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/06. region select-ngN9Cr-QfiI.zh-CN.vtt 432 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-i7pRvuVoWg0.ja.vtt 431 B
    Part 02-Module 03-Lesson 05_Particle Filters/03. Belief Modality-5vdbYPc7tWw.ja.vtt 430 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.en.vtt 430 B
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1-cupiUHaKvdI.ja.vtt 423 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-yVh0lVlerWs.zh-CN.vtt 423 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-vG3ahYyLHlQ.ar.vtt 423 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.ar.vtt 422 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.en.vtt 422 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.ja.vtt 421 B
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-Z1oQl-1cUeE.ja.vtt 421 B
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-q95KMAIqDDY.ja.vtt 421 B
    Part 01-Module 04-Lesson 07_Decision Trees/31. Information Gain Calculation Part 10-XYHTuv2FpWQ.zh-CN.vtt 420 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.es-ES.vtt 420 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie-GkqOdgZnkig.ar.vtt 419 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-U3FUxkm1MxI.en.vtt 419 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.pt-BR.vtt 417 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.pt-BR.vtt 417 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-wOfAyDvun5w.zh-CN.vtt 416 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.ja.vtt 416 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/15. GaussianNB Deployment on Terrain Data-TcSnd3_hAy8.zh-CN.vtt 416 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.es-ES.vtt 416 B
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1-cupiUHaKvdI.zh-CN.vtt 415 B
    Part 02-Module 03-Lesson 02_Localization Overview/09. Normalize Distribution-Uc_rHR6U70U.zh-CN.vtt 414 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.ar.vtt 413 B
    Part 02-Module 03-Lesson 02_Localization Overview/06. Generalized Uniform Distribution-nsSvTTA0p8E.es.vtt 413 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-yVh0lVlerWs.en.vtt 412 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.bn.vtt 411 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/07. Quick Fixes #2-It6AEuSDQw0.zh-CN.vtt 410 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-i7pRvuVoWg0.zh-CN.vtt 409 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-V-jzhJoeZj8.zh-CN.vtt 409 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-2cD8T65E-jM.es-ES.vtt 408 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.ru.vtt 406 B
    Part 02-Module 03-Lesson 02_Localization Overview/10. pHit and pMiss-FnhHQht4vDo.zh-CN.vtt 406 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.pt-BR.vtt 405 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.en.vtt 405 B
    Part 01-Module 04-Lesson 07_Decision Trees/09. [object Object]-i7pRvuVoWg0.en.vtt 404 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/06. SVMs and Tricky Data Distributions-wbCq7wm81BU.zh-CN.vtt 401 B
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-q95KMAIqDDY.en.vtt 401 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.zh-CN.vtt 400 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.en.vtt 400 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.bn.vtt 400 B
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-8ffPkDiDioI.ja.vtt 398 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.ja.vtt 398 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.ja.vtt 398 B
    Part 02-Module 03-Lesson 05_Particle Filters/21. Orientation 1-cupiUHaKvdI.en.vtt 397 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-2cD8T65E-jM.en.vtt 397 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.es-ES.vtt 395 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.it.vtt 394 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/07. L1 12 L Planning Subsystem Connections-5c752eVAR3I.zh-CN.vtt 393 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/15. Starring interesting repositories-U3FUxkm1MxI.zh-CN.vtt 392 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.es.vtt 392 B
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Nd113 C6 L3 095 L Trigonometric Ratios Solution V2-c5iuVhWCOzc.en.vtt 391 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-z9crz_gwGCM.en.vtt 390 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.ja.vtt 389 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.ar.vtt 388 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.pt-PT.vtt 387 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.pt-PT.vtt 384 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.pt.vtt 384 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.pt-PT.vtt 383 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-z9crz_gwGCM.pt-BR.vtt 382 B
    Part 02-Module 03-Lesson 02_Localization Overview/20. Inexact Motion 2-gZbPZLFKS68.pt.vtt 381 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.pt.vtt 380 B
    Part 02-Module 04-Lesson 01_PID Control/06. Oscillations - Artificial Intelligence for Robotics-CO3zjkxBaIc.en.vtt 378 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.es-ES.vtt 378 B
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-q95KMAIqDDY.zh-CN.vtt 377 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.en.vtt 377 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-JNDsm_Gzxi0.es-ES.vtt 376 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-t2aT92C2ruA.ru.vtt 375 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-JNDsm_Gzxi0.en.vtt 373 B
    Part 01-Module 04-Lesson 07_Decision Trees/05. Constructing a Decision Tree 2nd Split-CIxvkVy1UBI.zh-CN.vtt 371 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.en.vtt 371 B
    Part 03-Module 02-Lesson 01_Search/09. Maze-yVh0lVlerWs.ja.vtt 367 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.ar.vtt 367 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.zh-CN.vtt 367 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.zh-CN.vtt 367 B
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough - Artificial Intelligence for Robotics-gDbpwPdStlY.ja.vtt 366 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.ja.vtt 365 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-JNDsm_Gzxi0.ja.vtt 365 B
    Part 01-Module 03-Lesson 01_Introduction to Neural Networks/16. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364 B
    Part 02-Module 03-Lesson 05_Particle Filters/18. Never Sampled 3-Z1oQl-1cUeE.zh-CN.vtt 363 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-sudTOiG-NJo.pt-BR.vtt 363 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-l3zXhTxQiTs.ar.vtt 362 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.es-ES.vtt 362 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-cUKlYjQEQGY.es-ES.vtt 362 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.it.vtt 361 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.en.vtt 360 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie-GkqOdgZnkig.ja.vtt 360 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.es.vtt 359 B
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.ar.vtt 359 B
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-MhhM1uh0-3w.ja.vtt 358 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-sudTOiG-NJo.ja.vtt 357 B
    Part 05-Module 02-Lesson 01_GitHub Profile Review/05. Identify fixes for example “bad” profile-AF07y1oAim0.zh-CN.vtt 357 B
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.ja.vtt 357 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-tkllhaHoko8.ar.vtt 357 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.ja.vtt 356 B
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.ar.vtt 356 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-EDFp4wU5BMo.zh-CN.vtt 356 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.ar.vtt 354 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.it.vtt 352 B
    Part 01-Module 04-Lesson 07_Decision Trees/27. Information Gain Calculation Part 6-zqmrW9N9WGw.zh-CN.vtt 352 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.es-ES.vtt 351 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-JNDsm_Gzxi0.zh-CN.vtt 351 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.pt-PT.vtt 351 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.ja.vtt 350 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-2cD8T65E-jM.zh-CN.vtt 349 B
    Part 01-Module 03-Lesson 04_Deep Neural Networks/05. Rectified Linear Units-z9crz_gwGCM.zh-CN.vtt 348 B
    Part 02-Module 03-Lesson 02_Localization Overview/13. Normalized Sense Function-GqWszyHTYas.en.vtt 348 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.pt.vtt 348 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.es-ES.vtt 348 B
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-i457B5Iyg-8.ja.vtt 346 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.it.vtt 345 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature-9KAHkienFWk.ar.vtt 345 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.zh-CN.vtt 344 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.zh-CN.vtt 343 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.ja.vtt 343 B
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-ebFQqd7Uhek.ru.vtt 341 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.pt-PT.vtt 341 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.ja.vtt 340 B
    Part 02-Module 04-Lesson 01_PID Control/06. Oscillations - Artificial Intelligence for Robotics-CO3zjkxBaIc.zh-CN.vtt 340 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-AMFig-sYGfM.ja.vtt 340 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.ar.vtt 340 B
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-8ffPkDiDioI.en.vtt 339 B
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-i457B5Iyg-8.en.vtt 339 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.pt.vtt 338 B
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough - Artificial Intelligence for Robotics-gDbpwPdStlY.es-ES.vtt 338 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.en.vtt 337 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-sudTOiG-NJo.en.vtt 337 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.es-ES.vtt 336 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.pt-BR.vtt 335 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-ysebYA6tDZ4.it.vtt 335 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-cUKlYjQEQGY.en.vtt 334 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.ja.vtt 334 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.pt-PT.vtt 333 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.en.vtt 331 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.pt.vtt 330 B
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-oyw7WEHMvVY.ja.vtt 325 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.ja.vtt 325 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro to CNNs-B61jxZ4rkMs.pt-BR.vtt 324 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-vG3ahYyLHlQ.pt-BR.vtt 324 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-ijy0n1EjY0M.ar.vtt 323 B
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Quiz 5-upKjISd3aBk.zh-CN.vtt 322 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.ja.vtt 321 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.en-US.vtt 321 B
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough - Artificial Intelligence for Robotics-gDbpwPdStlY.en.vtt 321 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.it.vtt 320 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-M2Sp-Y2a71c.zh-CN.vtt 319 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.ja.vtt 319 B
    Part 02-Module 02-Lesson 02_Kalman Filters/07. Maximize Gaussian-2cD8T65E-jM.ja.vtt 319 B
    Part 02-Module 03-Lesson 05_Particle Filters/17. Never Sampled 2-i457B5Iyg-8.zh-CN.vtt 318 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.en.vtt 318 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.ja.vtt 316 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.es-ES.vtt 316 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian-sBsju-6nQWI.zh-CN.vtt 315 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-AMFig-sYGfM.es-ES.vtt 314 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.ja.vtt 314 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.pt-PT.vtt 314 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.ja.vtt 314 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-tkllhaHoko8.ja.vtt 314 B
    Part 02-Module 03-Lesson 02_Localization Overview/27. Sense and Move 2--wT7h9Gdm_8.en.vtt 313 B
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-8ffPkDiDioI.zh-CN.vtt 312 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/09. L1 15 L On To The Code-_jhipYTqp3U.en.vtt 312 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.zh-CN.vtt 312 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.pt.vtt 311 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/10. A Good Linear Decision Surface-sudTOiG-NJo.zh-CN.vtt 311 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.es-ES.vtt 310 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.es-ES.vtt 310 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-sKiumVTdpgY.zh-CN.vtt 309 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.ar.vtt 309 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro to CNNs-B61jxZ4rkMs.en-US.vtt 309 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.es-ES.vtt 309 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie-GkqOdgZnkig.pt-BR.vtt 307 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.es-ES.vtt 306 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-t2aT92C2ruA.ja.vtt 305 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.ja.vtt 304 B
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-MhhM1uh0-3w.en.vtt 304 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.es.vtt 303 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro to CNNs-B61jxZ4rkMs.en.vtt 303 B
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-ebFQqd7Uhek.ja.vtt 303 B
    Part 02-Module 04-Lesson 01_PID Control/10. Is PD Enough - Artificial Intelligence for Robotics-gDbpwPdStlY.zh-CN.vtt 302 B
    Part 01-Module 03-Lesson 05_Convolutional Neural Networks/02. Intro to CNNs-B61jxZ4rkMs.zh-CN.vtt 301 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-cUKlYjQEQGY.ja.vtt 301 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-4-0nBfsD4jo.es-ES.vtt 301 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.en.vtt 301 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.en.vtt 299 B
    Part 02-Module 04-Lesson 02_PID Controller Project/01. 07 Control A01 C++ On The Vehicle-LjlgqozwzzA.en.vtt 299 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.it.vtt 298 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.it.vtt 298 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian-sBsju-6nQWI.en.vtt 298 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.ja.vtt 297 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-AMFig-sYGfM.en.vtt 297 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-l3zXhTxQiTs.pt-BR.vtt 297 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-l3zXhTxQiTs.ja.vtt 297 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.ja.vtt 297 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-vG3ahYyLHlQ.ja.vtt 296 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-vG3ahYyLHlQ.en.vtt 296 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.pt-PT.vtt 296 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.it.vtt 296 B
    Part 02-Module 05-Lesson 01_Geometry and Trigonometry Refresher/11. Nd113 C6 L3 095 L Trigonometric Ratios Solution V2-c5iuVhWCOzc.zh-CN.vtt 296 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.it.vtt 295 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-fGcozDEwnwY.es-ES.vtt 294 B
    Part 01-Module 01-Lesson 03_Computer Vision Fundamentals/14. Hough Quiz 5-upKjISd3aBk.en.vtt 294 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.zh-CN.vtt 294 B
    Part 02-Module 03-Lesson 02_Localization Overview/19. Inexact Motion 1-mGWGhgZG_jM.pt.vtt 293 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.pt-BR.vtt 293 B
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-aBUxPyEDOWw.ru.vtt 292 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-4-0nBfsD4jo.en.vtt 292 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-vG3ahYyLHlQ.zh-CN.vtt 292 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-tkllhaHoko8.pt-BR.vtt 291 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.en.vtt 290 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.pt-PT.vtt 290 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.en.vtt 290 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.it.vtt 290 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.en.vtt 289 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split--3VPMBIwTtE.pt-BR.vtt 289 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.en.vtt 288 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.pt.vtt 287 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.pt-PT.vtt 287 B
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.zh-CN.vtt 287 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.zh-CN.vtt 286 B
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.en.vtt 286 B
    Part 03-Module 05-Lesson 01_Autonomous Vehicle Architecture/09. L1 15 L On To The Code-_jhipYTqp3U.zh-CN.vtt 286 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.en.vtt 285 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.ar.vtt 285 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-tkllhaHoko8.zh-CN.vtt 285 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie-GkqOdgZnkig.en.vtt 285 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.it.vtt 284 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.pt.vtt 284 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.pt-PT.vtt 284 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.ar.vtt 283 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/09. Handoff to Katie-GkqOdgZnkig.zh-CN.vtt 282 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.en.vtt 282 B
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-oyw7WEHMvVY.zh-CN.vtt 282 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.ja.vtt 281 B
    Part 02-Module 02-Lesson 02_Kalman Filters/22. Another Prediction-cUKlYjQEQGY.zh-CN.vtt 281 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-nYt9b_pNvEE.pt.vtt 281 B
    Part 02-Module 02-Lesson 02_Kalman Filters/17. Predict Function-AMFig-sYGfM.zh-CN.vtt 280 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.en.vtt 280 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.ja.vtt 280 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature-9KAHkienFWk.ja.vtt 279 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.ar.vtt 278 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-oDPbdGXH5nE.zh-CN.vtt 277 B
    Part 02-Module 03-Lesson 02_Localization Overview/31. Formal Definition of Probability 3-TF6AWXSlOcY.zh-CN.vtt 277 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.pt-BR.vtt 276 B
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-ebFQqd7Uhek.en.vtt 275 B
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-xNPEjY4dsds.es-ES.vtt 275 B
    Part 02-Module 03-Lesson 05_Particle Filters/02. State Space-oyw7WEHMvVY.en.vtt 274 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-V0FNwMKhIVM.pt-BR.vtt 273 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-l3zXhTxQiTs.en.vtt 273 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.pt-BR.vtt 272 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-fGcozDEwnwY.ja.vtt 271 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.bn.vtt 271 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.ar.vtt 271 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.pt-BR.vtt 270 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-fGcozDEwnwY.en.vtt 270 B
    Part 02-Module 03-Lesson 05_Particle Filters/16. Never Sampled 1-MhhM1uh0-3w.zh-CN.vtt 270 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian-sBsju-6nQWI.es-ES.vtt 268 B
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.pt-BR.vtt 266 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.ar.vtt 265 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/08. From Scatterplots to Predictions 2-tkllhaHoko8.en.vtt 265 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8TqVHRan4Fo.ar.vtt 265 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.zh-CN.vtt 264 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.zh-CN.vtt 264 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-GvCSZOR3hLQ.zh-CN.vtt 264 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.en.vtt 263 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-SuGzxfoye9s.ar.vtt 263 B
    Part 01-Module 04-Lesson 07_Decision Trees/06. Class Labels After Second Split-A7KKnDmZBA0.zh-CN.vtt 263 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.en.vtt 263 B
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.en.vtt 263 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.ja.vtt 262 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-t2aT92C2ruA.en.vtt 262 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.it.vtt 262 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.en.vtt 262 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.pt-BR.vtt 261 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.ja.vtt 261 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature-9KAHkienFWk.pt-BR.vtt 261 B
    Part 01-Module 04-Lesson 07_Decision Trees/19. Entropy Calculation Part 4-bhwb2v9rEdI.en.vtt 260 B
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.zh-CN.vtt 260 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-c7UjSq7Fmr8.zh-CN.vtt 259 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-GvCSZOR3hLQ.en.vtt 259 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.bn.vtt 257 B
    Part 01-Module 04-Lesson 07_Decision Trees/12. Decision Tree Accuracy-1z5mVNdF1KA.pt-BR.vtt 256 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-ijy0n1EjY0M.ja.vtt 256 B
    Part 01-Module 04-Lesson 07_Decision Trees/07. Constructing A Decision TreeThird Split-RxySNoOmXnc.ja.vtt 256 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/05. Practice with Margins-l3zXhTxQiTs.zh-CN.vtt 256 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-PaE5caOJ5kg.ar.vtt 256 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-4YP0K-5c310.pt-BR.vtt 255 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.pt-PT.vtt 255 B
    Part 02-Module 03-Lesson 02_Localization Overview/24. Move Twice-oqlgQa1IdcY.zh-CN.vtt 255 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature-9KAHkienFWk.en.vtt 254 B
    Part 01-Module 04-Lesson 07_Decision Trees/23. Information Gain Calculation Part 2-t4qaavAslSw.zh-CN.vtt 253 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.pt.vtt 252 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.en.vtt 250 B
    Part 02-Module 03-Lesson 02_Localization Overview/22. Inexact Move Function-68Kao9dkIKA.zh-CN.vtt 250 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.pt-PT.vtt 249 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.es-ES.vtt 248 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-t2aT92C2ruA.zh-CN.vtt 247 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-SuGzxfoye9s.ja.vtt 246 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-4-0nBfsD4jo.ja.vtt 246 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.pt.vtt 246 B
    Part 02-Module 03-Lesson 02_Localization Overview/07. Probability After Sense-dEiQObhi2J4.zh-CN.vtt 245 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-s_-I8mbrfw0.zh-CN.vtt 244 B
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.ar.vtt 244 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.pt-PT.vtt 243 B
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-xNPEjY4dsds.en.vtt 243 B
    Part 02-Module 02-Lesson 02_Kalman Filters/05. Preferred Gaussian-sBsju-6nQWI.ja.vtt 242 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.es-MX.vtt 241 B
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-aBUxPyEDOWw.ja.vtt 241 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.pt.vtt 240 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.zh-CN.vtt 238 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-NTm_mA4akP4.ar.vtt 238 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-ijy0n1EjY0M.pt-BR.vtt 237 B
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-xNPEjY4dsds.zh-CN.vtt 237 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.en.vtt 236 B
    Part 02-Module 02-Lesson 02_Kalman Filters/13. Separated Gaussians-fGcozDEwnwY.zh-CN.vtt 236 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.ru.vtt 235 B
    Part 03-Module 02-Lesson 01_Search/18. Computing Value-ebFQqd7Uhek.zh-CN.vtt 233 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/16. Separating with the New Feature-9KAHkienFWk.zh-CN.vtt 233 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.es-ES.vtt 231 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.zh-CN.vtt 229 B
    Part 02-Module 02-Lesson 02_Kalman Filters/06. Evaluate Gaussian-4-0nBfsD4jo.zh-CN.vtt 229 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.es.vtt 228 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.pt-PT.vtt 228 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-SuGzxfoye9s.pt-BR.vtt 226 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.en.vtt 226 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.ja.vtt 226 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-T4GbEVybNlY.ar.vtt 225 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.pt-BR.vtt 225 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.ja.vtt 225 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.pt.vtt 225 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-SuGzxfoye9s.en.vtt 224 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.es-ES.vtt 223 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.zh-CN.vtt 222 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.en.vtt 222 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.ja.vtt 222 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.ja.vtt 220 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-z0oijOqN8K8.es.vtt 220 B
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-aBUxPyEDOWw.zh-CN.vtt 220 B
    Part 02-Module 03-Lesson 06_Implementation of a Particle Filter/01. 05 Localization A04 Particle Filters In C++-zL6dEu1jrH8.en.vtt 219 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-ijy0n1EjY0M.en.vtt 219 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.ja.vtt 219 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.ja.vtt 219 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-ijy0n1EjY0M.zh-CN.vtt 219 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.en.vtt 219 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.zh-CN.vtt 218 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.es-ES.vtt 218 B
    Part 02-Module 03-Lesson 02_Localization Overview/21. Inexact Motion 3-BldUOLB2U1Y.it.vtt 218 B
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.pt-BR.vtt 217 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.es-MX.vtt 216 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.pt-BR.vtt 215 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.it.vtt 215 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.it.vtt 213 B
    Part 03-Module 02-Lesson 01_Search/08. Optimal Path 2-GvCSZOR3hLQ.ja.vtt 213 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-PaE5caOJ5kg.en.vtt 212 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.ja.vtt 211 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-T4GbEVybNlY.ja.vtt 211 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.es-ES.vtt 211 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.en.vtt 210 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-ppSLADGROp8.ar.vtt 210 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.pt-PT.vtt 209 B
    Part 03-Module 02-Lesson 03_Behavior Planning/10. 09 S InputsToTransitionFunctions-AjMSl8zR-P0.en.vtt 209 B
    Part 02-Module 03-Lesson 02_Localization Overview/11. Sum of Probabilities-6c0XvswnGm0.ja.vtt 208 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.pt-BR.vtt 207 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/07. From Scatterplots to Predictions-SuGzxfoye9s.zh-CN.vtt 207 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.zh-CN.vtt 207 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.ru.vtt 207 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.pt.vtt 206 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.ja.vtt 205 B
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.ja.vtt 205 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.zh-CN.vtt 204 B
    Part 03-Module 02-Lesson 01_Search/10. Maze 2-aBUxPyEDOWw.en.vtt 204 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-j0uDMc3Yrlo.en.vtt 203 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.en.vtt 203 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-NTm_mA4akP4.en.vtt 203 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-PaE5caOJ5kg.pt-BR.vtt 201 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.bn.vtt 201 B
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.en.vtt 201 B
    Part 01-Module 04-Lesson 07_Decision Trees/02. Linearly Separable Data-YNfxSsQT78Y.zh-CN.vtt 200 B
    Part 01-Module 04-Lesson 07_Decision Trees/30. Information Gain Calculation Part 9-PDqyWzZCVBY.en.vtt 199 B
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.ja.vtt 199 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.pt-BR.vtt 199 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.ja.vtt 196 B
    Part 01-Module 04-Lesson 07_Decision Trees/24. Information Gain Calculation Part 3-yWPbe8onCeA.pt-BR.vtt 196 B
    Part 03-Module 02-Lesson 03_Behavior Planning/10. 09 S InputsToTransitionFunctions-AjMSl8zR-P0.zh-CN.vtt 195 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.en.vtt 194 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-T4GbEVybNlY.en.vtt 193 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.en.vtt 193 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-PaE5caOJ5kg.ja.vtt 193 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.it.vtt 193 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.zh-CN.vtt 192 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/06. Speed Scatterplot 3-PaE5caOJ5kg.zh-CN.vtt 191 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-NTm_mA4akP4.zh-CN.vtt 191 B
    Part 01-Module 04-Lesson 07_Decision Trees/18. Entropy Calculation Part 3-WmnGwUCW-Yc.zh-CN.vtt 190 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8TqVHRan4Fo.ja.vtt 190 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8TqVHRan4Fo.zh-CN.vtt 189 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-T4GbEVybNlY.pt-BR.vtt 188 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.ar.vtt 188 B
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.ar.vtt 187 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.ja.vtt 187 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-NTm_mA4akP4.pt-BR.vtt 185 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-GtiLFC7EgFE.zh-CN.vtt 185 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8TqVHRan4Fo.en.vtt 185 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.ar.vtt 184 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.en.vtt 184 B
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-17FoJwLiQkg.ja.vtt 182 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-ppSLADGROp8.ja.vtt 181 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.pt-BR.vtt 181 B
    Part 02-Module 02-Lesson 02_Kalman Filters/16. Gaussian Motion-xNPEjY4dsds.ja.vtt 181 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.es-ES.vtt 180 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/14. A New Feature-8TqVHRan4Fo.pt-BR.vtt 177 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.es.vtt 177 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/05. Speed Scatterplot 2-T4GbEVybNlY.zh-CN.vtt 176 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.zh-CN.vtt 176 B
    Part 02-Module 03-Lesson 02_Localization Overview/25. Move 1000-x2o1g3J-1nw.zh-CN.vtt 175 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.it.vtt 175 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.pt-PT.vtt 175 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.pt-PT.vtt 173 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-PE-k3PGXeLY.pt.vtt 172 B
    Part 01-Module 04-Lesson 07_Decision Trees/25. Information Gain Calculation Part 4-i6aCKjMeZPk.zh-CN.vtt 172 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.es-ES.vtt 172 B
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-17FoJwLiQkg.en.vtt 171 B
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.pt-BR.vtt 170 B
    Part 02-Module 03-Lesson 05_Particle Filters/22. Orientation 2-17FoJwLiQkg.zh-CN.vtt 170 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.pt.vtt 170 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.en.vtt 170 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.pt-PT.vtt 170 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.ja.vtt 169 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.es.vtt 169 B
    Part 02-Module 03-Lesson 02_Localization Overview/05. Uniform Distribution-_sAkAALHyEg.pt.vtt 167 B
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.en.vtt 167 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-ppSLADGROp8.zh-CN.vtt 166 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/02. Separating Line-NTm_mA4akP4.ja.vtt 165 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-ppSLADGROp8.pt-BR.vtt 165 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.pt-PT.vtt 164 B
    Part 01-Module 04-Lesson 06_Support Vector Machines/03. Choosing Between Separating Lines-ppSLADGROp8.en.vtt 163 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.pt.vtt 161 B
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.pt-BR.vtt 160 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.pt-BR.vtt 159 B
    Part 01-Module 04-Lesson 07_Decision Trees/20. Entropy Calculation Part 5-ZSkYbBsFuOQ.zh-CN.vtt 157 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.ar.vtt 157 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.en.vtt 153 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.it.vtt 153 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.zh-CN.vtt 152 B
    Part 01-Module 04-Lesson 07_Decision Trees/17. Entropy Calculation Part 2-3tzTP3e0Cjw.ja.vtt 152 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.ru.vtt 150 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.en.vtt 150 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.ja.vtt 149 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.es-ES.vtt 147 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.en.vtt 142 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.it.vtt 138 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.ar.vtt 136 B
    Part 02-Module 03-Lesson 02_Localization Overview/29. Formal Definition of Probability 1-OQ2JS2wQzrs.ja.vtt 135 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.ja.vtt 133 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.ja.vtt 131 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.en.vtt 131 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.pt-BR.vtt 130 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-yTV3JPJk1kE.ru.vtt 129 B
    Part 01-Module 04-Lesson 05_Machine Learning and Stanley/04. Speed Scatterplot Grade and Bumpiness-v2UbL0SOm9A.en.vtt 128 B
    Part 02-Module 03-Lesson 02_Localization Overview/04. Uniform Probability Quiz-IZC33Tmy8Lo.zh-CN.vtt 128 B
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.ar.vtt 126 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-yTV3JPJk1kE.ja.vtt 125 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.ar.vtt 123 B
    Part 01-Module 04-Lesson 07_Decision Trees/29. Information Gain Calculation Part 8-F-xSYJ3y_pA.pt-BR.vtt 122 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.es-ES.vtt 120 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.ja.vtt 119 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.ja.vtt 119 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.es.vtt 117 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.zh-CN.vtt 115 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.en.vtt 113 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.it.vtt 111 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.pt-BR.vtt 111 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.pt-PT.vtt 110 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-yTV3JPJk1kE.en.vtt 109 B
    Part 01-Module 04-Lesson 07_Decision Trees/28. Information Gain Calculation Part 7-frzL4n6Y-vU.en.vtt 108 B
    Part 02-Module 03-Lesson 02_Localization Overview/08. Compute Sum-WgX17_mmc1c.pt.vtt 107 B
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.ja.vtt 107 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.es-ES.vtt 105 B
    Part 03-Module 02-Lesson 01_Search/19. Computing Value 2-yTV3JPJk1kE.zh-CN.vtt 104 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.ja.vtt 102 B
    Part 01-Module 04-Lesson 07_Decision Trees/26. Information Gain Calculation Part 5-4oOXVejgFGk.en.vtt 101 B
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.ar.vtt 99 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.pt-PT.vtt 98 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.en.vtt 96 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.pt.vtt 95 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.it.vtt 93 B
    Part 01-Module 03-Lesson 02_MiniFlow/08. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt 91 B
    Part 02-Module 03-Lesson 02_Localization Overview/30. Formal Definition of Probability 2-uw51WQDqXAI.zh-CN.vtt 91 B
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.pt-BR.vtt 90 B
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.ja.vtt 89 B
    Part 01-Module 04-Lesson 07_Decision Trees/16. Entropy Calculation Part 1-JX3NN5zwL08.en.vtt 86 B
    Part 01-Module 04-Lesson 03_Advanced Techniques for Lane Finding/03. Finding Lane Pixels by Histogram and Sliding Window-siAMDK8C_x8.zh-CN.vtt 79 B
    Part 01-Module 03-Lesson 02_MiniFlow/08. Pixels are Features!-qE5YYXtPq9U.en-US.vtt 72 B

Download Info

  • Tips

    “Udacity - Self-Driving Car Engineer nd013 v1.0.0” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.

  • DMCA Notice and Takedown Procedure

    If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.